
u459154:Data Files:Meertens:R-Interface:doc:2015_NederlabRwebservice_v2-6.docx

An insider’s guide to the Nederlab R visualization webserver
Erwin R. Komen

Start: January 20, 2015
This version: 2.6

Date: September 3, 2015 (10:05)

2 Erwin R. Komen

CONTENTS
1 Introduction ... 4

1.1 Short overview: principle components .. 4
1.2 Short overview: interacting with the R webservice ... 5
1.3 Short overview: the JavaScript interface to the R webservice 5

2 Web service input specification .. 6
2.1 Issuing “query”, “qjob” or “qxjob” .. 7
2.2 Issuing “status” or “statusx” ... 9
2.3 Issuing “task” .. 9
2.4 Issuing “image” .. 10
2.5 Issuing “debug” .. 11
2.6 Issuing “re-source” ... 11
2.7 Issuing “test” ... 11

3 Web service output specification .. 12
3.1 Response to “query” .. 12
3.2 Response to “qjob” and “qxjob” .. 13
3.3 Response to “status” and “statusx” .. 14
3.4 Response to “task” ... 15
3.5 Response to “image” .. 16
3.6 Response to “debug” .. 16
3.7 Response to “re-source” .. 16
3.8 Response to “test” .. 16

4 Internal make-up of the web service ... 18
4.1 The web service’s body: Java .. 18
4.2 Configuration ... 19
4.3 The JRI interface to “R” .. 20
4.4 The “Rserve” interface to “R” ... 20
4.5 Job cancellation ... 20

5 Caching and history .. 22
5.1 User/session history in rvisualization.js .. 22
5.2 The Java web service: job cache .. 22
5.3 The Java web service: user-job history .. 22
5.4 The Java web service: rserve connections ... 22
5.5 Caching of results within “R” .. 23

6 Web service maintenance .. 24
6.1 Setting up a completely new server ... 24
6.2 Re-starting the service ... 26
6.3 Logs and cleanup ... 26

7 The Nederlab “rvisualization.js” interface .. 28
7.1 Function "nederlab.rvisualization.init" .. 28
7.2 Function "nederlab.rvisualization.ext_getFigure" ... 32
7.3 Function "nederlab.rvisualization.ext_getTable" .. 32
7.4 Function "nederlab.rvisualization.ext_getQlist" .. 32
7.5 Function "nederlab.rvisualization.ext_initSaving" .. 33
7.6 Function "nederlab.rvisualization.ext_changevis" .. 34
7.7 Function "nederlab.rvisualization.ext_prevquery" .. 34
7.8 Event handling functions ... 34

7.8.1 Mouse click: nlabRclick() ... 35
7.8.2 Mouse enters visualization part: nlabRshowTip() 35
7.8.3 Mouse leaves visualization part: nlabRhideTip() 35

Nederlab R-visualization 3

7.8.4 Show vertical bar: nlabRshowVert() .. 35
7.8.5 Hide vertical bar: nlabRhideVert() ... 35

8 The “R” code ... 36
8.1 The structure of NedLabVisGG.r .. 36
8.2 Normalization .. 39

8.2.1 Document frequency normalization ... 39
8.2.2 Term frequency normalization ... 39

8.3 Manual pages for selected “R” functions .. 40
8.3.1 Function nlabvis .. 41
8.3.2 Function nlabfigure ... 43
8.3.3 Function nlabcalc .. 46
8.3.4 Function nlabintv .. 48
8.3.5 Function nlabmakeggplot ... 50
8.3.6 Function nlabtosvg ... 51
8.3.7 Object nlab ... 52

9 Appendices .. 56
9.1 Installation of the service (older notes) ... 56
9.2 Updating (notes) .. 58
9.3 Using the service (notes) ... 59
9.4 Development and Debug Notes Error! Bookmark not defined.

10 References ... 60

4 Erwin R. Komen

1 Introduction
The “R-webservice” is a separate unit within the Nederlab project, and it can be used
separately for other purposes. Its main purpose is to (a) accept search requests, and (b) to
provide a visual and a tabular outcome of the search results. The R-webservice executes its
search on the Nederlab documents through the “broker” interface, which is a separate web
service. The R-webservice runs on a (physical or virtual/cloud) Linux CentOS computer, and
has been programmed in Java (running under Tomcat/Apache) and “R” (accessed from Java
either through JRI or by opening a new ‘connection’ to a running “Rserve” thread).
The Java program that contains the web-service interface to the “R” functions has been
derived from the open-source “BlackLab Server” (BLS) program available on github and
developed by INL (2014). This is why some of the input and output JSON is similar to the
BLS interface. There are, however, much differences of which a former user of BLS should
be aware.
1.1 Short overview: principle components
The main components of the R visualization webservice and its relations with the
"onderzoeksportaal" (the web user interface) as well as the "broker" (the web service that
handles text search requests) are depicted in Figure 1.

Figure 1 The R visualization webservice in its relation to the "onderzoeksportaal"

The "onderzoeksportaal" contains a number of JavaScript modules, two of which are shown
in Figure 1: (a) the "controller.js", which communicates with the broker to handle search
requests, and (b) the "rvisualization.js", which communicates with the "R visualization
webservice" running under Apache/Tomcat on a Linux computer. The "controller.js" also is
the JavaScript module that communicates with the "rvisualization.js" one. Section 7
describes the latter JavaScript component.

Nederlab(Onderzoeksportaal

R(visualization(web(server

Broker

Rserve

NLabRserver.java

NedLabVisGG.r

JRI

JSON

Renvironment
/qjob
/query
/re-source
/status
/test

Rconnect
/qxjob
/image
/statusx

controller.js
JSON

rvisualization.js

POST, GET

JSON

JSON

Nederlab R-visualization 5

The "R visualization webservice" communicates with the outside world through the
"NLabRserver.java" function (which is part of the NlabR project contained in the
/home/nederlab/webapps directory of the "R" web server computer). The Java part of the
web service handles the incoming commands in three different ways:
1) The /debug and /task commands are handled internally.
2) The /qxjob, /image and /statusx commands are part of the "Rconnect.java" interface,

which communicates with the "R" code in "NedLabVisGG.r"through the "rserve"
program, which runs independent of the Java code on the Linux server.

3) The /qjob, /query, /re-source, /test and /status commands are part of the
"Renvironment.java" interface, which communicates with the "R" code in
"NedLabVisGG.r" through the "JRI" package of Java (so this "R" runs inside the Java
code).

The web service 'backslash' commands are discussed in chapter 2, while chapter 3 discusses
their responses. The "R" code in "NedLabVisGG.r" is discussed in chapter 8, and the Java web
service interface is discussed in chapter 4.
1.2 Short overview: interacting with the R webservice
The most important steps for the web service part of the R-visualization are these:

1) Set up the Linux computer that contains the (Java) web service (6.1)
2) Issue a /qxjob command for a visualization request (2.1) and extract the jobid from the

initial response (3.2)
3) Monitor the progress by issuing a /statusx command every now and then (2.2).
4) Once the response (3.3) has the status code “completed”, use the svg picture (as well as

the table and the qlist if needed).
a) The svg picture can be put in a <div> on a html page.

5) Saving a figure in a particular format:
a) See the /image command (2.4) and response (3.5).

6) Going back to a previous visualization:
a) Issue a /task command with “pop” (see 2.3 and 3.4).

7) Checking if it works
a) Check if the Java part of the interface is up and running: /debug (2.5)
b) Check if the “R” part of the interface is up and running: /test (2.7)

1.3 Short overview: the JavaScript interface to the R webservice
Important points relating to the “rvisualization.js” module that provides the interface between
the Nederlab ‘onderzoeksportaal’ and the “R” visualization web service are these:
1) Getting a figure: initiate using rvisualization.init (7.1), and either (a) pass on a

<div> for the location, or (b) pass on a function that will be called once the figure is
available. You need the latter if you want to put it in a custom place and/or take actions
that need to take place after the figure has been made, such as placing the figure
somewhere by yourself (7.2), get/process the data table (7.3) or the list of queries (7.4).

2) Allow the user to save a figure in a different format (jpeg, epf etc): initiate making the
figure in the required format using rvisualization.ext_initSaving (7.5). Pass on a
function that takes care of the URL received where the image is available for download.

3) Return to the previous query: use rvisualization.ext_prevquery (7.7). The
"formquery" that was used for the previous query is accessible too.

6 Erwin R. Komen

2 Web service input specification
The R-webservice accepts POST, PUT and GET. The POST and GET methods can be used to
send data (a query) to the web service. There are, in fact, a number of methods accepted by
the R-webservice:

command parameter Return
/query JSON: query SVG picture + table
/qjob JSON: query initially: userid + jobid + taskid

finally: JSON object with figure, table etc.
/qxjob JSON: query initially: userid + jobid + taskid

finally: JSON object with figure, table etc.
/status JSON: userid,

jobid
status object for “qjob”

/statusx JSON: userid,
jobid

status object for “qxjob”

/task JSON: cmd, task cmd= “pop” – remove last task + result of prec. task
cmd= “get” – result of indic. task
cmd= “job” – jobid of task

/image JSON:
jobid/query,
format, figtype

/debug - (none)
/re-source - (none) Read the “R” functions afresh for “query” and “qjob”

processing
/test one word

Important notes:
1) All commands can be issued to the R-webservice through:

http://server-address/tomcat/nlabr/command?args
2) The current (feb 2015) server address is 145.100.57.84. This is a virtual CentOS Linux

computer in the cloud.
3) Calling “query” may result in a time-out.

a) This uses the JRI interface, and waits until the task is completely executed
b) Alternative: use “qxjob”

4) Calling “qjob” may cause others calling “qjob” to wait.
a) This uses the JRI interface, which means that only one person can execute “R” code at

any given time.
b) Alternative: use “qxjob”

5) Calling “re-source” only works for “query” and “qjob”.
a) The same functionality for “qxjob” is achieved by going to the R-web server, closing

all current “Rserve” processes and executing “sh startRserve.sh”.
6) Make sure you call “status” to check on “qjob” and “statusx” to check on “qxjob”
7) The “task” command deals with three different task-number related issues. The “task

number” is the number of the r-visualization (q and/or qx)-job that has been issued by one
particular user/window (each user/window/tab gets a unique identifier under which the
server stores tasks). The “jobid” is a unique number under which all the (q and/or qx) jobs
requested by all users have been stored on the R-visualisation web server. The “task”
commands provide an interface between the two.
a) Command “pop”: remove the last task from the current user’s stack and then return the

“response” object belonging to the new last task (so the penultimate original task).

Nederlab R-visualization 7

b) Command “get”: return the “response” object that belongs to the indicated task
number of the current user.

c) Command “job”: get the “jobid” number associated with the indicated task number of
the current user.

2.1 Issuing “query”, “qjob” or “qxjob”
The query commands /query, /qjob and /qxjob take one json datastructure as argument.
The json response datastructure is treated in 3.1 for /query and in 3.2 for /qjob and /qxjob.
The difference between the three commands is shown in the following table:

Command Function
/query Issue a query and wait until receiving back the SVG picture.

(Note: this may lead to a time-out, when much data needs to be gathered.)
/qjob Start a query job through the JRI interface and report back immediately and supply

status updates through /status.
(Note: only one user can, at any time, be served through the JRI interface.)

/qxjob Start a query job through a free ‘connection’ with the ‘Rserve’ service running locally
on the R-visualization web server. Report back immediately and supply status updates
through /statusx.

Since the R-function that is used for /query, /qjob and /qxjob is identical, the Json
components accepted by all three commands are identical too:
srchTerms (Array of strings) List of search items
cnds* (Array of "condition" objects) One "condition" object for each search item
flts* (Array of "filter" objects) One "filter" object for each search item
colors* (Array of strings) One color name for each search item
labels* (Array of strings) One label name for each search item
userid (String) Unique id of user/session/window, grouping a number of search jobs into

one 'history'
iEnv (Number) The number of the visualization ‘environment’ on the user’s page
legend show a legend next to the figure (true) or not (false)
width width of the canvas (in inches)
height height of the canvas (in inches)
yrFrom (Numeric) First year to include. If negative (e.g. “-1”), then the first year is taken

to be the first year of the decade of first occurrence of the search term.
yrTo (Numeric) Last year
interval (Numeric) Number of years per interval
norm (Boolean) Normalize the frequencies against the number of words (for termfreq)

or documents (for docfreq) available in a year/period?
'true' give normalized frequencies (use intNorm for the factor)
'false' use absolute frequencies (but the picture may be distorted) (default)

intNorm (Numeric) Normalization factor (this results in the relative frequency being 'n'
occurrances per 'intNorm' words)

file* (String) File name to save image to (extension determines type). This particular
component will not be of much use for queries to the R-visualisation web server,
since the resulting file will be stored locally on the web server, where the caller
will not be able to retrieve it. Use the /image command instead (see section 2.4).

8 Erwin R. Komen

server (String) Which server to contact for the search:
'nederlab' The real "Nederlab" project server (default)
'nederlab2' The “Nederlab” server using broker2
'radboud' A mock server providing randomized data
 (But it won’t be able to handle all broker requests.)

debugL (Numeric) Level of (internal) debugging (0-3) (default=0)
The simplest query may be to look for one word and use as many default values as possible.
An example for such kind of JSON argument is in (1).

(1) …/qxjob?{ "srchTerms": ["hans"], "yrFrom": -1 }

The request in (1) looks for the search term “hans” from the decade it first occurs (hence the
“-1” value for the “yrFrom” parameter) until the default ending year. All other parameters
have their default values: no color or label specifications, use normalisation per 1000 words,
look for the term-frequency, and use the default server.
A more complex search would be as in (2):

(2) …/qxjob?{ "srchTerms": ["oorlog", "vreede", "staaking"],
 "colors": ["red", "gold", "darkblue"],
 "labels": ["oorlog", "vrede", "staking"],
 "source": "content",
 "method": "termfreq",
 "vis": "pointline",
 "yrFrom": 1800,
 "yrTo": 1895,
 "interval": 5,
 "norm": true,
 "legend": true,
 "intNorm": 10000,
 "server": "nederlab",
 "debugL": 0 }

The request in (2) looks for the history of three terms (‘oorlog’, ‘vreede’ and ‘staaking’),
manually making sure that they are depicted in the three indicated colors, and that the legend
contains the modern Dutch words ‘oorlog’, ‘vrede’ and ‘staking’. The starting and finishing
years have been specified, as has the interval (5 years). There is normalisation but per 10.000
words.
Calls to the R-visualization web service that are issued from the Nederlab ‘onderzoeksportaal’
will usually have just one search item, but this item may be a complex combination of meta
data requirements. This is why such requests generally come with their own ‘broker’
condition, as in (3):

Nederlab R-visualization 9

(3) …/qxjob? {"vis":"bar","yrFrom":-1, "yrTo":2010, "interval":10,
 "norm":false, "method":"docfreq",
 "events":{
 "fig_mouseover": "nederlab.rvisualization.nlabRshowTip",
 "fig_mouseout": "nederlab.rvisualization.nlabRhideTip",
 "fig_click": "nederlab.rvisualization.nlabRclick",
 "vert_mousemove":"nederlab.rvisualization.nlabRshowVert",
 "vert_mouseout": "nederlab.rvisualization.nlabRhideVert"},
 "srchTerms":["Zoek naar: braden;;
 Zoek in: tekst: ;
 Verfijningen: geslacht=man;"],
 "cndlist":[{"type":"and",
 "list":[
 {"type":"equals","field":"content","value":"braden"},
 {"type":"range","field":"nederl_time_order"}]}],
 "userid":"session_2015_1_2_16:19:1.299_62",
 "formq":{ "searchtype":"simple","words-and":"braden",
 "resultsort":"relevantie","resultorder":"desc",
 "choices":"tekst","geslacht":["man"],
 "words-phrase":"","words-or":"","words-not":""}}

The query in (3) contains a specification of the broker query to be used in the “cndlist”
field. Since the “cndlist” field is not null, the specification of the search term in
“srchTerms” only serves to distinguish between queries (and re-use the results, where
appropriate).
The “userid” field assigns a unique id to each instance of a browser (or a tab within a
browser). The value is used by the R-visualization service to keep track of a user’s history,
and allow returning to a previously issued query.
Another feature to notice in (3) is the “events” specification. The “events” list contains the
correct JavaScript callback function names that are to be called when the listed events occur.
The json query specification also contains a field “formq”. This field is not known to the R-
visualization service, but the service won’t complain over this (or other) unknown fields. The
JavaScript rvisualization function in the ‘onderzoeksportaal’ has added this field to the query,
so that it can have all necessary specifications together in one place.
2.2 Issuing “status” or “statusx”
The /status and /statusx commands are meant to check on the progress of the /qjob and
/qxjob commands respectively. Both commands take the same JSON argument:

 /statusx?{ "userid":"session_2015_1_2_16:19:1.299_62",
 "jobid": "25"}

The json fields are “userid” and “jobid”. The “userid” should preferably be the same one
as has been used to issue the /qjob or /qxjob commands. The “jobid” field must contain the
string value (a number between quotation marks) of the jobid that has been received from
the first reply on the /qjob or /qxjob commands. This first reply contains the status
“started”, and it is only this reply that returns the correct jobid value. See 3.3 for the
structure of the response objects to /status and /statusx.

2.3 Issuing “task”
The /task command actually contains four sub-commands, depending on the make-up of the
json argument it contains. The /task command takes one JSON argument, properly speaking,
but this JSON argument is a list that may consist of up to three fields: “cmd”, “userid” and
“taskid”. Here are some examples:

Command Function

10 Erwin R. Komen

/task?{"cmd": "show"} Show the stack of available jobs.
The stack is shown internally, inside the catalina.out
log file in the R-web server machine.

/task?{"cmd": "pop",
"userid": "session_2015_1_2_62"}

Remove the last task from the task-stack, and return the
previous json /qxjob (or /qjob) query. This query
can then be re-issued, and may lead to a fast response,
provided the result is still in the server’s cache.

/task?{"cmd": "get",
"userid": "session_2015_1_2_62",
"taskid": "4"}

Leave the task-stack as it is, but retrieve the query
belonging to task number “taskid”. This query can
then be re-issued, and may lead to a fast response,
provided the result is still in the server’s cache.

/task?{"cmd": "job",
"userid": "session_2015_1_2_62",
"taskid": "4"}

Return the “jobid” number belonging to the indicated
taskid.

See 3.4 for the possible responses.
2.4 Issuing “image”
The /image command is the preferred way of having the R visualization web server prepare
an image file (such as a .jpeg one). The command contains a number of obligatory and
optional arguments:

Argument Type Obl/Opt Description
query string query or

jobid
The “query” value must be the complete “rquery” string
(that is: stringified JSON object) as it has originally been
issued through a /query, /qjob or /qxjob command.

jobid number query or
jobid

Whenever the “jobid” parameter is specified, the
“query” parameter (if given) is ignored. The figure will
be derived from the information stored on the R-
visualization web server for the job with the given jobid.
The “jobid” number itself can be derived from the
“taskid” through the /task{“cmd”: “job”} command.

userid string optional The userid-string as returned by the original /qjob or
/qxjob command’s “started” status.

format string obligatory The extension of the image that has to be produced. This
extension does double duty as a label for the format:
jpeg JPEG raster image (compressed)
png portable network graphics (compressed raster)
bmp BMP raster image
tex TeX/LaTeX formatted line drawing
eps (Extended) PostScript format
pdf PDF document
svg scalable vectore graphics picture

figtype string optional The kind of figure that has been produced (‘bar’,
‘barstack’, ‘line’ and so on – see the “vis” option in
section 2.1).
When specified, this string will be included in the name of
the figure.

Example:
/image?{ "jobid": 10, "format": "jpeg"} - Make an image from the search job with id “10”
and save it on the server in the “jpeg” format. Return a link to this image. The syntax of the
returned (JSON) string is described in section 3.5.

Nederlab R-visualization 11

2.5 Issuing “debug”
The /debug command is to be issued without any argument. Its purpose is to see if the R-
visualization service is up at all. See 3.6 for the response.
2.6 Issuing “re-source”
The /re-source command forces the R-code in the server to be re-loaded. See 3.7 for the
response. This command only has effect on the functioning of /query and /qjob: these
execute “R” through the JRI interface (so “R” is, in a sense, part of the Java package). The
/qxjob command calls “R” through a locally running “Rserve” connection, which means that
the /re-source command does not affect it. The equivalent to the /re-source command for
/qxjob is: (a) enter the Linux server that runs the R webservice, (b) kill all the “Rserve”
processes, (c) run the script startRserve.sh (in the nederlab home directory).

2.7 Issuing “test”
The /test command may be given without argument, or with just one (non-JSON) argument.
A simple word will do, such as: /test?kees. See 3.8 for the responses.
Note: the /test command right now only tests the correct functioning of the JRI interface
from Java to "R". The commands using this interface are: /qjob, /query, /re-source,
/status. Other commands (that is: /qxjob and /statusx) make use of the independently
running "rserve" service. The correct working of "rserve" is not (yet) obtained through the
/test command.

12 Erwin R. Komen

3 Web service output specification
Most of the commants specified in section 1.2 result in a JSON response from the R-
webservice. The structure of these responses is not always the same in version 1.4. This
section provides an overview of all the possible response structures.
Note: efforts are underway to reach a unified response structure that will consist of a JSON
list containing the following elements:
Argument Type Description
indexName string This is a copy of the reqesting index name (e.g “query”, “qxjob”,

“statusx” and so on)
status object The status object is a key-value pair list that has at least the elements

“code” and “message”. The “code” will, in general, be one of four:
“started”, “working”, “completed” or “error”. The “message”
part is task-specific and attempts to pass on the status in prosa, and,
where possible, in more detail.

content object A key-value pair list containing command-specific content.

3.1 Response to “query”
The response to a /query command is a JSON list of 8 key-value pairs:

Argument Type Description
indexName string Should have the value “query”
resource string Empty; not used
status string Contains “Completed” upon successful completion

Contains “Error” when an error was found
rest string Empty; not used
queryString string A stringified copy of the original rquery
query String A message accompanying the reply by the server
figure String A string containing the SVG picture (if successful)
table string A stringified JSON object containing the table with the found numbers.

An example of a successfully returned JSON object is this one, where the “figure” and the
“table” string have been replaced by “…” in order to save space:

{ "indexName": "query",
 "resource": "",
 "status": "Completed",
 "rest": "",
 "queryString": "{\"srchTerms\": [\"aap\"], \"yrFrom\": 1800, \"yrTo\": 1860}",
 "query": "R-query has been executed",
 "figure": "…"
 "table": "…" }

When the server detects an error in the /query argument, the following type of answer is
returned:
{ "indexName": "query",
 "resource": "",
 "status": "Error",
 "rest": "",
 "queryString": "{\"srchTerms\": [\"aap\"], \"yrFrom\": 1800, \"yrTo\": \"aap\"}",
 "query": "R-query returned an error",
 "message": "Error in intFrom:intTo : NA/NaN argument\n",
 "figure": "",
 "table": "" }

Nederlab R-visualization 13

3.2 Response to “qjob” and “qxjob”
The initial response to a /qjob or /qxjob command is a JSON coded object that consists of a
“status” part and a “content” part. The most important return parameter is the
content.jobid, which is subsequently needed to retrieve the results of the correct query job:

{ "status": {
 "code": "started",
 "message": "Searching, please wait...",
 "userid": "F029586E3E34FF2FC40DC63820EA5EDB",
 "checkAgainMs": 200 },
 "content": {
 "jobid": "67"}
}

The status object consists of the following parts:
Key Type Description
code String Either “started”, “completed” or “error”
message String An explanation or sub-status to the “code” field
userid String The unique user/session id that has been supplied by the calling party
checkAgainMs number The number of milliseconds that should pass minimally before checking

for the status again (this is not used right now)

The contents object only has one part:
Key Type Description
jobid String The number that is used internally in the web server for this particular

visualization job

The progress of the /qjob or /qxjob can be tracked by issuing /status or /statusx
command (see section 2.2). Once the /status or /statusx command returns a status code
“completed”, the resulting data can be obtained by re-issuing the original /qjob or /qxjob.
This will return a JSON structure consisting of 11 list items:

14 Erwin R. Komen

Key Type Description
indexName String This containst the command: “qjob” or “qxjob”
content Object A JSON key-value pair list containing details of the search that has been

conducted:
searchParam The original search (see also queryString)
searchTime The time taken for the search in milliseconds
searchDone Since the search is completed, the value is true
searchStatus This has the value “completed”, signalling success

resource String Empty; not used
status String Contains “Completed” upon successful completion

Contains “Error” when an error was found
rest String Empty; not used
queryString String A stringified copy of the original rquery
taskid Number The task number relative to the user/session/browser-tab-page
query String A message accompanying the reply by the server
figure String A string containing the SVG picture (if successful)
table String A stringified JSON object containing the table with the found numbers.
qlist String A stringified JSON object containing all the broker queries that have

been used by “R”

An example of a successful response from a /qxjob looks like this (compare this with the
return to the /query command in section 3.1):

{ "indexName": "qxjob",
 "status": {
 "code": "completed",
 "message": "R has finished",
 "checkAgainMs": 200
 },
 "content": {
 "searchParam": {
 "query": "{ \"srchTerms\": [\"oorlog\", \"vreede\",

\"staaking\"],\"colors\": [\"red\", \"gold\", \"darkblue\"],\"labels\":
[\"oorlog\", \"vrede\", \"staking\"],\"source\": \"content\",\"method\":
\"termfreq\",\"vis\": \"pointline\",\"yrFrom\": 1800,\"yrTo\":
1895,\"interval\": 5,\"norm\": true,\"legend\": true,\"intNorm\":
10000,\"server\": \"nederlab\",\"debugL\": 0}"

 },
 "searchTime": 19169,
 "searchDone": true,
 "searchStatus": "completed"
 "userid": "AD7EF1711ECB64C0264BAB8E99F12506",
 "jobid": "67",
 "taskid": 1,
 "query": "R-query has been executed",
 "figure": "…",
 "table": "…",
 "qlist": "…" }
 } }

3.3 Response to “status” and “statusx”
The response to the /status and /statusx commands contain a json structure with a general
status code and a more specific status message. A valid in-between response would be:

 { "indexName": "statusx",
 "status":{"code":"working",
 "message":"searching:36:223",

Nederlab R-visualization 15

 "userid":"session_2015_1_2_16:19:1.299_62",
 "jobid":"1",
 "checkAgainMs":200}}

Should there be an error, then the code is:

 { "indexName": "statusx",
 "status":{"code": "error",
 "message": "this contains an error message",
 "userid": "session_2015_1_2_16:19:1.299_62",
 "jobid": "0",
 "checkAgainMs": 200}}

The way to keep track of the status, then, is to monitor the value of status.code. The
following values can be expected:

status.code explanation
working The job is bein processed. A more informative message indicating the

progress of the job can be found in status.message.
completed The job has successfully completed. (The status.message value

should also be “completed”.)
The result of the job can be collected by re-sending the original
/qjob or /qxjob query, and harvesting the response to it.

error An error has occurred. A more specific message may be found in
status.message.

Please note: a /statusx or /status call never returns the result of a /jobx or /job.
The resulting (svg) figure can only be collected by re-issuing the original /jobx or /job.

3.4 Response to “task”
The /task command consists of a number of sub-commands, and the responses vary
accordingly. The overal response is the list of the indexName, a content object and a status
object (should there be an error, then the status object contains the status.code “error” as
well as an explanation in the status.message part). The “get” and “pop” sub-commands are
aimed at returning a previously issued /qjob or /qxjob query. A possible response is this:

{ "indexName":"task",
 "content":{
 "query": "{\"vis\":\"bar\",\"yrFrom\":-

1,\"yrTo\":2010,\"interval\":10,\"norm\":false,\"method\":\"termfreq\",\"events\
":{\"fig_mouseover\":\"nederlab.rvisualization.nlabRshowTip\",\"fig_mouseout\":\
"nederlab.rvisualization.nlabRhideTip\",\"fig_click\":\"nederlab.rvisualization.
nlabRclick\",\"vert_mousemove\":\"nederlab.rvisualization.nlabRshowVert\",\"vert
_mouseout\":\"nederlab.rvisualization.nlabRhideVert\"},\"srchTerms\":[\"er\"],\"
cndlist\":null,\"userid\":\"session_2015_1_2_16:19:1.299_62\",\"formq\":{\"searc
htype\":\"simple\",\"words-
and\":\"er\",\"resultsort\":\"relevantie\",\"resultorder\":\"desc\",\"words-
phrase\":\"\",\"words-or\":\"\",\"words-not\":\"\"}}",

 "jobid":1}
 "status":{"code": "completed",
 "message": "task [pop] has been successfully executed",
 "userid": "session_2015_1_2_16:19:1.299_62" }}

The “content” object of the response differs, depending on the sub-command of /task. The
“get” and “pop” sub-commands return the requested /qjob or /qxjob query (as a string) in
“content.query”. The “get”, “job” and “pop” sub-commands return the relevant jobid in
“content.jobid”. The “pop” sub-command returns a stringified JSON array of objects
containing a jobid, userid and query in “content.stack”.

16 Erwin R. Komen

3.5 Response to “image”
When the /image command is issued with the correct parameters and results in the creation
of an image, a JSON object is returned containing the “indexName”, “content” and
“status” parts. The “content.location” gives the location where the prepared image can
be downloaded (the server’s address needs to be prepended:
http://server/img/nlabout_bar.21.jpeg):

{ "indexName":"image",
 "content":{ "location": "img/nlabout_bar.21.jpeg"}
 "status":{"code": "completed",
 "message": "The image is ready at the indicated location",
 "userid": "session_2015_1_2_16:19:1.299_62" }}

The “location” contains the part of the URL relative to the server’s main URL. The status
contains “completed” upon success, and “error” when something is wrong. When, for
instance, a request is made for a non-existent job number, the following JSON string returns:

{ "indexName":"image",
 "status":{"code": "error",
 "message": "Cannot find image file of job: 1",
 "userid": "session_2015_1_2_16:19:1.299_62" }}

The /image command checks whether the search job for which an image is being requested
has actually finished. If this is not the case, it also returns an error. This error can be avoided
by first checking for the status of a job (through /statusx) and making sure the /image
command is only issued when the job has finished.
3.6 Response to “debug”
There is only one successful response to the /debug command and that is the following
JSON structure:
{ "indexName": "debug",

 "status":{"code": "completed",
 "message":"The Java-part of the R-webservice works fine.",
 "userid": "session_2015_1_2_16:19:1.299_62" }}

The “indexName” copies the /debug command and the status object contains a
“completed” status with an accompanying message, as well as a copy of the userid.

3.7 Response to “re-source”
The response to a /re-source command is a json structure consisting of the “indexName”
and a “status” object. The status code can be either “completed” or “error”. In the latter
case an error message is contained in status.message.

{ "indexName": "re-source",

 "status":{"code": "completed",
 "message":"R-functions have been re-sourced",
 "userid": "session_2015_1_2_16:19:1.299_62" }}

3.8 Response to “test”
The command /test can be used with and without arguments. The JSON response copies the
indexName and contains a “status” and “content” object. If “R” returns an error, the
status.code equals “error” and the status.message contains additional information. The
response to a call without arguments is this:

{ "indexName":"test",
 "content":{"testRes": "R-function test() without arguments"}
 "status":{"code": "completed",
 "message": "R has executed test()",
 "userid": "session_2015_1_2_16:19:1.299_62" }}

Nederlab R-visualization 17

When there is an argument, for instance “kees”, the response will be like this:

{ "indexName":"test",
 "content":{"testRes":"Arg=[kees], lib=[
 [1]: /home/nederlab/R/x86_64-redhat-linux-gnu-library/3.1
 [2]: /usr/lib64/R/library
 [3]: /usr/share/R/library],
 wd=[/usr/share/tomcat],
 R_HOME=[/usr/lib64/R],
 R_LIBS=[~/R/x86_64-redhat-linux-gnu-library/3.1],
 R_LIBS_USER=[/home/nederlab/R/x86_64-redhat-linux-gnu-library/3.1]
 R_ENVIRON=[/usr/lib64/R/etc/Renviron]"}
 "status":{"code": "completed",
 "message": "R has executed test()",
 "userid": "session_2015_1_2_16:19:1.299_62" }}

The test function not only copies the argument, it also provides the values for a number of
server-internal locations within the content.testRes field:
1) All the locations where “R” looks for libraries
2) The working directory of “R” (the result of applying getwd())
3) A few environment variables: R_HOME, R_LIBS, R_LIBS_USER and R_ENVIRON
Note: the /test command right now only tests the correct functioning of the JRI interface
from Java to "R". The commands using this interface are: /qjob, /query, /re-source,
/status. Other commands (that is: /qxjob and /statusx) make use of the independently
running "rserve" service. The correct working of "rserve" is not (yet) obtained through the
/test command.

18 Erwin R. Komen

4 Internal make-up of the web service
The R visualization web service is controlled by a Java program that runs under “tomcat”
(which runs under an Apache httpd service) on a Linux computer (see section 6.1 for
installation instructions). The compiled Java code (developed under “NetBeans”) is a “.war”
file, and as soon as this .war file is placed on the ~/webapps directory of the Linux server,
the Tomcat server unpacks and installs it.
4.1 The web service’s body: Java
The body of the Java web service program has been copied from INL’s BlackLab Server, but
it has been completely adapted for the R-visualization purpose. The Java service itself is
aimed at supplying as little as possible ‘content’ processing; such processing is transferred to
the “R” engine(s). What the Java service does handle is all the communication with the
requester and some job caching. The main components of the Java code, as well as their
interaction with the "R" code and the broker, are illustrated in Figure 2.

Figure 2 The Java web service program

As soon as the Tomcat server is started up, it executes the "init" function in the
NlabRserve.java class. This init function reads the configuration parameters, and then sets
up the "Renvironment.java" and the "Rconnect.java" classes, which, respectively, provide
interfaces to "R" through JRI and Rserve.
Once started up, any POST or GET requests enter NlabRserver.java through "doPost" and
"doGet", but they are all treated alike in the central function "processRequests". This latter
function calls upon the "RequestHandler.java" class to deal with the individual requests
through "handle" functions. The requests are handled in a number of ways:

Broker

JSON

Renvironment.java

InitR

ReSource

Rconnect.java

NlabImage

NedLabVisGG.r

nlabgridsave

NlabVis NlabVisnlabvis

Test test

SearchManager.java

RequestHandler.java
RequestHandlerReSource

RequestHandlerTest

RequestHandlerStatus

RequestHandlerStatusx

RequestHandlerTask

RequestHandlerQjob

RequestHandlerQxjob

RequestHandlerImage

RequestHandlerDebug

handle

handle

handle

handle

handle

RequestHandlerQuery handle

handle

handle

handle

handle

searchGetJobR

searchGetJobRx

searchR

searchRx

searchRimg

NLabRserver.java

doPost doGet

processRequest

init

POST GET

Job.java

JobRx

JobRimg

performSearch

performSearch

performSearch

JSON

lUserJob

JobR

Nederlab R-visualization 19

Request Handling
/re-source Call the JRI interface handling class Renvironment.java and execute InitR
/test Call the JRI interface handling class Renvironment.java and execute the "test"

function in the NedLabVisGG.r code.
/query Call the "NlabVis" function in Renvironment.java and execute the "nlabvis"

function in the NedLabVisGG.r code. This uses the JRI interface, and since there
is no job-threading the function only returns when the job is done. Larger jobs get
timed out.

/status Access the SearchManager.java class and locate the "qjob" with the indicated
jobid in the search Job cache. Then pass back the job's "status" and "content".

/statusx Access the SearchManager.java class and locate the "qxjob" with the indicated
jobid in the search Job cache. Then pass back the job's "status" and "content".

/task Work with the "lUserJob" list contained in "Job.java".
This list connects users through their unique "userid" to jobs (through the jobid)

/qjob Call the "NlabVis" function in Renvironment.java (the JRI interface) and
execute the "nlabvis" function in the NedLabVisGG.r code. The call goes
through the SearchManager.java class, which turns the search into a job inside a
new thread. The job is archived in the "lUserJob" list.

/qxjob Call the "NlabVis" function in Rconnect.java (the Rserve interface) and
execute the "nlabvis" function in the NedLabVisGG.r code. The call goes
through the SearchManager.java class, which turns the search into a job inside a
new thread. The job is archived in the "lUserJob" list.

/image Call the "NlabImage" function in Rconnect.java (the Rserve interface) and
execute the "nlabgridsave" function in the NedLabVisGG.r code. The call goes
through the SearchManager.java class, which turns the search into a job inside a
new thread.

/debug This is handled inside the RequestHandler.java class.

4.2 Configuration
There are a number of parameters that can be specified in a configuration file. There are
default settings for many of the parameters, and there is a default configuration file (nlabr-
server-defaults.json.txt) that comes as part of the NlabR.war package. Instead of
relying on this default configuration file, however, the software deployer should provide a
configuration file named "nlabr-server.json", which should be placed in the
/home/nederlab/webapps directory, where it gets picked up by the "init" function of
NlabRserve.java.
The configuration file is a list of JSON objects:
Object Description
debugModeIps A list of IPs that run in debug mode
rinfo Contains important file and directory specifications for "R".

Make sure "institute" selects the "nederlab" one.
indices NOT USED (could be deleted)
requests Settings here affect how requests are handled (see BLS).

Make sure defaultOutputType is set to json. The other settings are not
used (I think).

performance Settings here affect how jobs are handled (see BLS). Changes here affect
/qjob, /qxjob and /image commands. Test and check to see if the number
"20" is not too low for maxNumberOfJobs.

20 Erwin R. Komen

4.3 The JRI interface to “R”
The JRI interface to "R" is contained in the Renvironment.java class. JRI directly calls the
"C" code functions through which "R" is interpreted. The "InitR" function loads the "R" code
contained in the NedLabVisGG.r file. The location of this file is set in the configuration file in
rinfo.nederlab.rCodeLoc.
The "init" function in the NlabRserver.java class creates one instance of the
Renvironment class, and this instance is available through the getRenv function.

4.4 The “Rserve” interface to “R”
The Rserve interface to "R" is contained in the Rconnect.java class. The "init" function in
the NlabRserver.java class creates one instance of the Rconnect class, and this instance is
available through the getRcon function.
The "rserve" program is started up independently (see section 6.2), and when it does, it loads
the NedLabVisGG.r file.
The Rconnect.java class contains a cache of "connections" to Rserve. Whenever a request
reaches NlabImage or NlabVis inside the Rconnect.java class, a free connection is obtained
from this cache. Connections are not tied to users, which means that a user may make use of
different connections from job to job. This design choice, together with the "caching" feature
of results in "R" described in section 5.3, means that requests for slightly changed
visualizations that could be handled without making additional calls to the broker, may,
nevertheless, still result in repeated broker requests. Timing, then, depends on the caching
capabilities of the broker.
4.5 Job cancellation
Every job (be it JobR, JobRx or JobRimg) has a unique "jobid", and each job can have
multiple 'clients' waiting for it to finish. Since it is undesirable to have more than one job per
user-context (that is: a visualization location on the screen of a user), there is a facility to
decrease the number of clients for a particular job from a particular user. The procedure
involves a number of steps:
1) A call to the function changeClientsWaiting(-1) for the job in question.
2) If there are no more ‘clients’ waiting for the fulfillment of this job, then:

a) The job is ‘cancelled’: the job's thread receives an interrupt and ceases to exist.
b) The job’s “reusable” flag is set to “false”.
c) A flag file with this jobid and the extension ".stop" is created.
d) The “R” code stops as soon as it detects the presence of the flag file, and if it does this,

it deletes the flag file again.
This arrangement has only been activated for the "Qxjob" type – the jobs that result from a
/qxjob command. The RequestHandlerQxjob.java class's "handle" function is the place
where job inspection and potential cancellation takes place. The code makes use of the static
lUserJob list that keeps track of all the user-job combinations. It inspects which of the user's
jobs of type "jobrx" (which is the internal code for /qxjob) are still active, and it then takes
two steps: (a) it creates a file with this jobid and the extension ".stop", and (b) it decreases
the number of clients for the job by one. The former action serves to signal to the "R" code
that the nlabvis() function should be stopped.
The “R” code “NedLabVisGG.r” contains the function “CheckStop”. When this function is
called, it checks for the presence of the file created by Java consisting of its jobid and the
extension ".stop". If that file exists, CheckStop removes it and causes the “R” execution to

Nederlab R-visualization 21

stop. (It returns with an “error” message “Interrupted”, but this error message is not captured
by the Java code anymore, since it already abandoned taking care of this particular function.)
Using a ".stop" file has a potential danger: if the “R” code does not come to a point where
“CheckStop” identifies the .stop file and deletes it, then the .stop file remains there. When
the “tomcat” service is re-started and a job with the same number starts, the “R” code might
think it needs to stop. However, the "R" code clears any old .log and .stop files of its own
jobid at the very beginning of nlabvis() by calling InitStatus.

22 Erwin R. Komen

5 Caching and history
Caching of results in the R visualization web service takes place on a number of places:
1) The JavaScript "rvisualization.js" uses an array to keep the variables belonging to one

visualization realization on the screen of a user together.
2) The Java web service contains a cache of the latest 20 jobs carried out by all users

connected to the service. These jobs include: /qjob, /qxjob and /image instances.
3) The Java web service contains a list of user-job pairs: which job (that is: /qjob, /qxjob

and /image) has been carried out by which user. This list remains active as long as the
tomcat web service is running.

4) The Java web service contains an array of Rserve 'connection'. Each job is handled by a
connection from this array, and if there is no free one, then a new connection is added.

5) Every "R" session (that is, within one connection in the array of connections) has a small
cache of the last 10 visualization requests that have been carried out.

5.1 User/session history in rvisualization.js
There is, properly speaking, no history of user sessions within rvisualization.js, nor is there a
real cache. However, the /task command provides access to the list of jobs (that is: /qjob,
/qxjob and /image) that have been carried out through the current user's context.
This 'context' is a unique string for the combination of: (a) Nederlab visualization user, (b)
browser instance (or tab page within a browser), and (c) visualization location on the screen
(since one Nederlab screen may have more than one location where a visualization is being
shown).
The variables that are global within "rvisualization.js" are kept in the array arEnv, where
each element in the array can be reached through its unique context string.
5.2 The Java web service: job cache
The Java web service contains a cache of the latest 20 jobs carried out by all users connected
to the service. These jobs include: /qjob, /qxjob and /image instances. This job caching
mechanism is retained from the BlackLab Server code (see BLS).
5.3 The Java web service: user-job history
The Java web service contains a list of user-job pairs: which job (that is: /qjob, /qxjob and
/image) has been carried out by which user. This list remains active as long as the tomcat
web service is running. There is no size limit to this array.
The array elements are JSON objects, and each object contains the following elements:
Element Description
job The kind of job: "jobr" or "jobrx"
userid The "userid" value used for this job
timestamp Date and time when the job got added to this array
jobid The "jobid" identifying the job in the job cache
query The rQuery that was used as argument to the /qjob or /qxjob search request

Jobs are added through "addUserJob", the current array is listed through "showUserJob", the
last element is popped from the array through "popUserJob", and a "jobid" can be found
through "getJobFromTask".

5.4 The Java web service: rserve connections
The Java web service contains an array of Rserve 'connection'. Each job is handled by a
connection from this array, and if there is no free one, then a new connection is added. There

Nederlab R-visualization 23

is no size limit to this array. The connections are only reset when "rserve" is killed and started
up again.
5.5 Caching of results within “R”
Every "R" session (that is, within one connection in the array of connections) has a small
cache of the last 10 visualization requests that have been carried out.
This cache is realized as a global array "arNlab" in the NedLabVisGG.r module. The size of
the array is the global variable arNlabSize that can be changed in the "R" code. If the
number of visualizations for a particular connection is larger than 10, then the array elements
are copied down, and the oldest one drops out. The array is accessed through the functions
nlabpush and nlabget.

24 Erwin R. Komen

6 Web service maintenance

6.1 Setting up a completely new server
Assumptions:
1) A virtual host cloud machine has been prepared based on Linux RedHat/CentOS
2) There is an account “nederlab” for this machine

Installing apache (=httpd):
sudo yum install httpd

Installing tomcat:
sudo yum install tomcat

Or more specific:
sudo yum install tomcat6 tomcat6-webapps tomcat6-admin-webapps

Letting tomcat work under apache:
Find directory /etc/httpd/conf.d and add a new file ajp.conf:
ProxyRequests Off
<Proxy *>
 Order deny,allow
 Deny from none
 Allow from localhost
</Proxy>
ProxyPass /tomcat/nlabr ajp://localhost:8009/nlabr
ProxyPassReverse /tomcat/nlabr ajp://localhost:8009/nlabr

Adapt the file /usr/share/tomcat/conf/server.xml, adding after the <Host> section for
“localhost” another section:
 <Host name="localhost2" appBase="/home/nederlab/webapps"
 unpackWARs="true" autoDeploy="true">

 <!-- SingleSignOn valve, share authentication between web applications
 Documentation at: /docs/config/valve.html -->
 <!--
 <Valve className="org.apache.catalina.authenticator.SingleSignOn" />
 -->

 <!-- Access log processes all example.
 Documentation at: /docs/config/valve.html
 Note: The pattern used is equivalent to using pattern="common" -->
 <Valve className="org.apache.catalina.valves.AccessLogValve"

directory="logs"
 prefix="nederlab_access_log." suffix=".txt"
 pattern="%h %l %u %t "%r" %s %b" />
 </Host>

This section only serves to make sure that any .war file that is put in
/home/nederlab/webapps gets automatically unpacked.

Add a context specification file nlabr.xml to the localhost in
/usr/share/tomcat/conf/Catalina/localhost:
<?xml version='1.0' encoding='utf-8'?>
<Context docBase="/home/nederlab/webapps/NLabR" path="/nlabr" reloadable="true" />

Installing R:
sudo yum install R

If this does not work, try:
For El6 or CentOS 6
su -c 'rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-

8.noarch.rpm'
sudo yum update

Nederlab R-visualization 25

sudo yum install R

Preparing basics for R libraries:
sudo yum install curl curl-devel
sudo yum install libxml2 libxml2-devel

Getting R started up correctly:
R
setwd("/home/nederlab")
source("NedLabVisGG.r")
package("rJava")
package("Rserve")

The file.bash_profile needs to be adapted to contain several variables…
.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi
User specific environment and startup programs
JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.71.x86_64/jre
JRE_HOME=$JAVA_HOME
R_HOME=/usr/lib64/R
JRI_HOME=/home/nederlab/R/x86_64-redhat-linux-gnu-library/3.1/library/rJava
PATH=$JAVA_HOME/bin:$R_HOME/bin:$JRI_HOME:$PATH:$HOME/bin
CATALINA_HOME=/usr/share/tomcat
Make the variables available
export JAVA_HOME
export JRE_HOME
export R_HOME
export PATH
R_SHARE_DIR=/usr/share/R
export R_SHARE_DIR
R_INCLUDE_DIR=/usr/include/R
export R_INCLUDE_DIR
R_DOC_DIR=/usr/share/doc/R-3.1.2
export R_DOC_DIR
JRI_LD_PATH=${R_HOME}/lib:${R_HOME}/bin:
if test -z "$LD_LIBRARY_PATH"; then
 LD_LIBRARY_PATH=$JRI_LD_PATH
else
 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JRI_LD_PATH
fi

Tomcat needs to start in such a way that it knows where to find the additional libraries.
So adapt /etc/tomcat/tomcat.conf:
Use JAVA_OPTS to set java.library.path for libtcnative.so
JAVA_OPTS="-Djava.library.path=/home/nederlab/R/x86_64-redhat-linux-gnu-

library/3.1/library"

java.library.path = /home/nederlab/R/x86_64-redhat-linux-gnu-library/3.1
 /usr/lib64/R/lib
 /usr/lib64/R/bin
 /usr/java/packages/lib/amd64
 /usr/lib64
 /lib64
 /lib
 /usr/lib

This conf file also needs a last line with R_HOME defined as /usr/lib64/R/bin.

Directories to be created:
/usr/share/tmp Must be readable and writable by everyone!!!

26 Erwin R. Komen

6.2 Re-starting the service
Starting and stopping of the Apache server:
sudo service httpd start

Starting and stopping tomcat:
sudo service tomcat start
sudo service tomcat restart
sudo service tomcat stop

If there is a pid error message, then remove the tomcat PID lock files:
(NOTE: this is usually not necessary)
sudo rm /var/run/tomcat.pid
sudo rm /var/lock/subsys/tomcat
sudo service tomcat start

If the cataline.out file has become too large, then replace the existing catalina.out with the
empty one in the nederlab home directory:
sudo cp /home/nederlab/catalina.empty /usr/share/tomcat/logs/catalina.out

Any changes in the R-location and the location or name of the NedLabVisGG.r file should be
processed in the file: /home/nederlab/webapps/nlabr-server.json

Also restart the Rserve program after having killed any Rserve processes:
ps –ef | grep Rserve
kill xxxx (fill in the process number to be killed)
cd ~
sh startRserve.sh

This re-loads the current ~/NedLabVisGG.r

Note: the “Rserve” program makes use of a configuration file ~/Rserve.conf:
workdir /tmp/rserve
remote disable
port 6311
encoding utf8
interactive no
source /home/nederlab/NedLabVisGG.r
eval library("RCurl")
eval library("rjson")
eval library("ggplot2")
eval library("XML")
eval library("gridSVG")
eval library("Rserve")
eval library("grid")

This configuration file contains a number of essential initializations that are meant to spead-
up the functioning of the “R” webservice. It reads the NedLabVisGG.r source, and it pre-loads
the libraries that are needed for “R” to function correctly. These libraries are loaded with the
“R” command “library()”, but this assumes that they have already been successfully
installed using the “R” command install.packages(“name”).

6.3 Logs and cleanup
There are a number of log files in use within the Linux system. What is relevant for the
visualization service is but a subset of these.
The file /usr/share/tomcat/logs/catalina.out logs debug and error messages issued by
the Java web service that runs under tomcat. This file can get quite large, so it needs to be
removed periodically.

Nederlab R-visualization 27

The "Rserve" program logs matters under its connections. Each connection gets an own
directory under the /tmp/rserve one. The files do not seem to be that large.
The directory /usr/share/tmp is used to keep ".log" and ".grid" files belonging to
visualization jobs. These files are used in order to fall back on earlier jobs. The directory
could be cleaned when tomcat is restarted. Individual files can probably be removed safely
when they are older than 24 hours.

28 Erwin R. Komen

7 The Nederlab “rvisualization.js” interface
The web service as described in chapters 1-6 serves the Nederlab “onderzoeksportaal”
through the JavaScript module “rvisualization.js”. This chapter gives an overview of how to
use this module and describes essential features of its internal make-up.
The rvisualization module contains a number of JavaScript functions that interact with the R-
webserver where needed. A short overview of these functions is provided in Table 1.

Table 1 JavaScript functions that interface with the "R" web service

Function Purpose
init(rvisArgs) Calculate the visualisation specified in “rvisArgs”.
ext_getFigure(sContext) Return the visualisation available in sContext as svg object.
ext_getTable(sContext) Return the values of the visualization in sContext as a table.
ext_getQlist(sContext) Return a list of all the broker queries used to calculate the

visualization in sContext.
ext_initSaving(format,
sContext, fn_endSaving)

Start creating a picture in the specified format of the
visualization of sContext. The URL string to this picture
must be retrieved through the function fn_endSaving.

ext_changevis(sContext,
oVisArgs)

Change the visualization according to the specifications in
oVisArgs.

ext_prevquery(sContext) Go to the previous visualization of sContext.

The following subsections provide more explanations to the rvisualization JavaScript
functions and come with examples for each of them.
7.1 Function "nederlab.rvisualization.init"
The init() function translates the visualization specification into a format request for the R
visualization web service, sends this request to the web service, receives the response, and,
depending on the specifications of rvisArgs, it will either show the figure immediately, or
else make it available for subsequent functions such as ext_getFigure().
The rvisArgs object that needs to be passed on to the init() function may contain the key-
value pairs as listed in Table 2.

Nederlab R-visualization 29

Table 2 The possible components of the rvisArgs object

Key Explanation
formquery The form query object (specifying the search request on the user-form)
brokerquery The broker query object (as has been used for the search request)
context String that uniquely describes the place of the picture on the user's window/tab
rquery Internal use: the JSON string passed on to the R-visualization service
width Optional: width of the picture (in pixels)
height Optional: height of the picture (can be left unspecified if equal to width)
context visualization key string (e.g. the name of the visualization on a web page)
cb_function Function to be called after a visualization has been created
cb_arg Second argument to cb_function. (The first argument is the context string.)
divVis Name of the <div> inside which this visualization should be positioned
divStatus Name of status <div>
divError Name of error <div>
outFig Make a <div> for the figure and show it there (provided divVis is specified)
outTab Make a <div> for the table and show it there (provided divVis is specified)
outQry Make a <div> for the query-list and show it there (provided divVis is specified)
outRef Make a <div> for the figure-save-url and show it there (provided divVis is

specified)
outRform Make a <div> for the visualization parameter form and show it there (provided

divVis is specified)
events list specifying the JavaScript callback function names of events in the SVG figure.

The value given for the events key must be an object containing the items shown in Table 3.

Table 3 The obligatory components of the events object

Key Arguments Event
fig_mouseover evt, svgElmId,

intvNum, srchItemNum
Mouse movement over data element (line, bar, point)
in the svg figure

fig_mouseout - Mouse leaves the data element in the svg figure
fig_click evt, svgElmId,

intvNum, srchItemNum
Left mouse button click on data element in the svg
figure

vert_mousemove evt, numIntvls,
numSrchItems, figType

Mouse movement anywhere in the svg figure
(Note: the 'standard' function calculates the nearest
vertical line through the data points and shows it.)

vert_mouseout evt, numIntvls Mouse is outside the svg figure

The internal work-flow of the init() function is shown in Figure 3.

30 Erwin R. Komen

Figure 3 Control flow from a visualization request to its result

The parameters specified in the object rvisArgs are translated into a visualization query, and
then passed on to the "private_methods" function createVisualization(). This latter
function issues an Ajax request to the R-visualization web service. Since this request is
asynchronous (hence the dotted line), this is the point where the rvisualization.init()
function returns to the caller. The visualization, however, has not yet been made.
Note: following up a call to the init() function with a call to the ext_getFigure() function
will not lead to correct results!!
The internal JavaScript function "processNedLabVis" picks up the "job" number issued to
this visualization by the R visualization web service. The job number is used in subsequent
Ajax calls to "processStatus", which periodically (once every 200 ms) check the progress
of the visualization job. Once the status "completed" arrives, the resulting visualization is
being gathered in the following way:
1) The internal function "showFigureTable" is called, and if the object rvisArgs has

specified a visualization <div> (through "divVis") and if it has set the "outFig" flag to
"true", then the svg picture is placed in a <div> under divVis.

2) If the object rvisArgs contains a specification of a callback function (cb_function plus
cb_arg), then this function is called with two arguments: (a) the context name string, and
(b) the object cb_arg. Since the visualization has been made, this user-defined callback
function is free to make a call to the ext_getFigure() function, and place the svg code
where it wants to have it.

The following example illustrates using the init() function with a specified target <div> for
the visualization:
 maakVisViaDiv: function (strLine, strDivName, strDivStatus) {
 var formquery = private_methods.getFormQuery(strLine);
 var brokerquery = null;
 var divParent = document.getElementById(strDivName);
 var iWidth = divParent.clientWidth;
 var iHeight = divParent.clientHeight;
 var year_start = private_methods.getFormNumber(1);
 if (year_start<0) { year_start = 1800; }
 var year_end = private_methods.getFormNumber(3);
 if (year_end<0) { year_end = 1899; }
 var interval = private_methods.getFormNumber(4);

Nederlab R-visualization 31

 if (interval<0) { interval = 1; }
 var bNorm = document.getElementById("form").elements[5].checked;
 var search_method = private_methods.getFormString(6);
 var iEnv = nederlab.rvisualization.init({
 formquery: formquery,
 brokerquery: brokerquery,
 divVis: strDivName, // Specificeer de visualisatie <div>
 divStatus: strDivStatus, // De naam van de status <div>
 width: iWidth, // Optionele breedte (binnen "divVis")
 height: iHeight, // Optionele hoogte (binnen "divVis")
 context: strDivName, // Sleutelnaam voor dit visualisatieobject op deze pagina
 yrFrom: year_start, // Optionele visualisatiespecificatie
 yrTo: year_end, // Optionele visualisatiespecificatie
 interval: interval, // Optionele visualisatiespecificatie
 norm: bNorm, // Optionele visualisatiespecificatie
 method: search_method,// Optionele visualisatiespecificatie
 outFig: true, // Maak visualisatie ergens in divVis aan
 outRform: false // Maak *geen* <form> aan voor input van parameters
 });
}

The following example illustrates using how the init() function can be approached using a
callback function:
 maakVisViaCallback: function (strLine, strDivName, strDivStatus) {
 var formquery = private_methods.getFormQuery(strLine);
 var brokerquery = null;
 var divParent = document.getElementById(strDivName);
 var iWidth = divParent.clientWidth;
 var iHeight = divParent.clientHeight;
 var year_start = private_methods.getFormNumber(1);
 if (year_start<0) { year_start = 1800; }
 var year_end = private_methods.getFormNumber(3);
 if (year_end<0) { year_end = 1899; }
 var interval = private_methods.getFormNumber(4);
 if (interval<0) { interval = 1; }
 var bNorm = document.getElementById("form").elements[5].checked;
 var search_method = private_methods.getFormString(6);
 var iEnv = nederlab.rvisualization.init({
 formquery: formquery,
 brokerquery: brokerquery,
 cb_function: nederlab.controller.plaatsfig,
 cb_arg: {target: strDivName},
 divStatus: strDivStatus,
 width: iWidth,
 height: iHeight,
 context: strDivName,
 yrFrom: year_start, // Optionele visualisatiespecificatie
 yrTo: year_end, // Optionele visualisatiespecificatie
 interval: interval, // Optionele visualisatiespecificatie
 norm: bNorm, // Optionele visualisatiespecificatie
 method: search_method, // Optionele visualisatiespecificatie
 outFig: false, // Do not make my own output
 outRform: false // Do not make a form with input parameters
 });
 var dummy = iEnv;
 },
 // Position the figure on the right place
 plaatsfig: function (sContext, objArg) {
 // Get the figure
 var sFig = nederlab.rvisualization.ext_getFigure(sContext);
 // Place the figure on the right spot
 var divTarget = document.getElementById(objArg.target);
 divTarget.innerHTML = sFig;
 // Pas de grootte van de <svg> binnen divTarget aan
 // Get a handle to the <svg>
 var divSvg = divTarget.firstElementChild;

32 Erwin R. Komen

 if (divSvg !== null) {
 divSvg.setAttribute('width', divTarget.clientWidth);
 divSvg.setAttribute('height', divTarget.clientHeight);
 }
 }

7.2 Function "nederlab.rvisualization.ext_getFigure"
This JavaScript function serves to collect the SVG object of the figure that has been created in
an rvisualization.init() call. It takes one argument, which is the context name string as
has been used. An example of how this function can be used is here:
 // Position the figure on the right place
 plaatsfig: function (sContext, objArg) {
 // Get the figure
 var sFig = nederlab.rvisualization.ext_getFigure(sContext);
 // Place the figure on the right spot
 var divTarget = document.getElementById(objArg.target);
 divTarget.innerHTML = sFig;
 // Pas de grootte van de <svg> binnen divTarget aan
 // Get a handle to the <svg>
 var divSvg = divTarget.firstElementChild;
 if (divSvg !== null) {
 divSvg.setAttribute('width', divTarget.clientWidth);
 divSvg.setAttribute('height', divTarget.clientHeight);
 }
 }

Note that once the svg figure object has been collected, it can be put into a div's
"innerHTML" without further modifications. The figure does not, however, automatically
adapt to the div's size. To get it fitted inside the div, the attributes "width" and "height" of the
svg's first element need to be adapted, as shown in the illustration. The figure will adapt its
size within the width and height specified, but it will retain its original width/height
correlation.
7.3 Function "nederlab.rvisualization.ext_getTable"
Provided a call to rvisualization.init() has been successful, the function ext_getTable
returns the values of the visualization in sContext as a table object.
An example of a Javascript function that 'interprets' the table object is here:

function getTableAsHtml(sContext) {
 // Get the table object
 var objTbl = nederlab.rvisualization.ext_getTable(sContext);
 // Interpret the table and put it in HTML format
 html = [""];
 html.push("<table><tr><th>Zoekterm</th><th>Periode</th><th>Frequentie</th>" +
 "<th>Totaal</th><th>Relatief</th></tr>");
 $.each(objTbl.intvHits, function (index, hit) {
 // Add all relevant info to the table rows
 html.push("<tr><td>" + objTbl.srchTerm[index] + "</td><td>" +
 objTbl.intvNames[index] + "</td><td align='right'>" + objTbl.intvAbs[index] +
 "</td><td align='right'>" + objTbl.intvWords[index] +
 "</td><td align='right'>" + objTbl.intvHits[index] + "</td></tr>");
 });
 html.push("</table>");
 var sResult = html.join("\n");
 // Return the html table
 return sResult;
}

7.4 Function "nederlab.rvisualization.ext_getQlist"
Provided a call to rvisualization.init() has been successful, the function ext_getQlist
returns the values of the visualization in sContext as a table object.

Nederlab R-visualization 33

An example of a Javascript function that 'interprets' the query list object is here:

function getQlistAsHtml(sContext) {
 // Get the query list
 var objTbl = nederlab.rvisualization.ext_getTable(sContext);
 // Interpret the query list and put it in HTML format
 html = [""];
 html.push("<table><tr><th>#</th><th>Broker</th></tr>");
 // Walk the list inside [objQlist]
 for (i in objQlist) {
 // Add each broker query to the row
 html.push("<tr><td>" + i + "</td><td>" +
 objQlist[i] + "</td></tr>");
 }
 html.push("</table>");
 // Combine the result as a string
 var sResult = html.join("\n");
 // Return the html table containing the list of queries
 return sResult;
}

7.5 Function "nederlab.rvisualization.ext_initSaving"
Provided a call to rvisualization.init() has been successful, the function
ext_initSaving starts the process of creating a picture file (such as jpeg or bmp) on the "R"
visualization web server. The function takes three arguments, as shown in X.

Table 4 Arguments to the ext_initSaving function

Argument Explanation
sFormat The kind of picture that needs to be made. The choice is between the

following kinds:
jpeg JPEG raster image (compressed)
png portable network graphics (compressed raster)
bmp BMP raster image
tex TeX/LaTeX formatted line drawing
eps (Extended) PostScript format
pdf PDF document
svg scalable vectore graphics picture

sContext The unique string identifying the visualization context on the user's page/tab.
fn_endSaving A function that needs to be called once the picture has been created.

This function receives one argument, which is an object that may contain the
following three key-value pairs:
status Either "completed" or "error"
message An error message, should the status be "error"
location The URL of the picture that has been created

An example of a Javascript function that triggers the creation of a downloadable picture and
uses a callback function to process the resulting URL is here:

// Plaatje maken
 function haalop_start(strTarget, strFormat) {
 // Zet the URL in de juiste div
 var divDownload = document.getElementById("download");
 // Initialiseer
 divDownload.innerHTML = "...";
 // Laat een plaatje maken van strTarget
 nederlab.rvisualization.ext_initSaving(strFormat, strTarget,
 nederlab.controller.haalop_einde);

34 Erwin R. Komen

 }

 // Beeindig ophalen plaatje
 function haalop_einde(objArg) {
 // Zet the URL in de juiste div
 var divDownload = document.getElementById("download");
 var sUrl;
 // Controleer de status
 if (objArg === undefined || objArg === null ||
 objArg.status === undefined || objArg.status === null) {
 sUrl = "(fout)";
 } else {
 if (objArg.status === "completed") {
 var sCombi = "<a href='" + objArg.location +
 "'>figuur downloaden (" + objArg.format + ")";
 sUrl = sCombi;
 } else {
 sUrl = objArg.status + ": " + objArg.message;
 }
 }
 // Process the result
 divDownload.innerHTML = sUrl;
 }

7.6 Function "nederlab.rvisualization.ext_changevis"
Provided a call to rvisualization.init() has been successful, the function
ext_changevis issues a new call to the R visualization web server, but with adapted
visualization specifications. The function takes two arguments:

Table 5 Arguments to the ext_ changevis function

Argument Explanation
sContext The unique string identifying the visualization context on the user's page/tab.
oVisArgs An object containing a revision of the visualization specifications.

This object may contain the following elements:
interval The number of years for each interval
norm Boolean specifying whether normalization is used or not
vis The kind of visualization (bar, line, point, linepoint, smooth)
method The counting method (docfreq, termfreq)

Execution of this javascript function results either (a) in a changed svg picture in the divVis
specified in the original call to rvisualization.init(), or (b) in a changed svg picture that
is made available to the callback function specified in the rvisArgs argument of the original
call to rvisualization.init().

7.7 Function "nederlab.rvisualization.ext_prevquery"
This JavaScript function serves to return to the preceding SVG figure, as has been created
with a previous call to rvisualization.init(), or to rvisualization.changevis. It takes
one argument, which is the context name string as has been used. The picture is either taken
from cache, or else re-calculated, and it is re-drawn according to the specifications of a
preceding rvisualization.init() call.

7.8 Event handling functions
There are about five standard event-handling functions that are used inside the SVG
visualizations made by the R webservice. All of these functions are part of the “exposed”
functionality of rvisualization.js.

Nederlab R-visualization 35

7.8.1 Mouse click: nlabRclick()
This event is triggered whenever a visualization data part (that is: a data line, a data point or a
data bar) is clicked by the user. The current action depends on the kind of visualization:

Visualization Action
line Change the thickness of the line. Toggle between 1.42 and 2.5.
bar Visual reaction:

 Change the opacity of the bar (toggle between 0.5 and 1.0)
Data reaction:
 Issue a “createVisualization” request where the visualization are:

- Year from and to take the interval of the bar
- Interval = 1 year
- Visualization = “linepoint”

point Change the size and opacity of the point. Toggle between large/small.

7.8.2 Mouse enters visualization part: nlabRshowTip()
This function is triggerd by a “mouseover” event, when the mouse finds itself over a data line,
data point or data bar. The action depens on the kind of visualization:

Visualization Action
line 1) Create and show a “tooltipRect” + “tooltipText” element containing the text

of the search term. The “rect” is temporarily added physically to the SVG.
2) Set the same text in the “divStatus”

bar, point 1) Create and show a “tooltipRect” + “tooltipText” element containing:
- Absolute frequency for the selected interval
- Number of words or documents for the interval
- Years of the interval

2) Set the same text in the “divStatus”

7.8.3 Mouse leaves visualization part: nlabRhideTip()
This function is triggerd by a “mouseout” event, when the mouse leaves a data line, data point
or data bar. Any “tooltipText” and “tooltipRect” elements that were created under the
mouseover event (see 7.8.2) are removed.

7.8.4 Show vertical bar: nlabRshowVert()
Line, point and smooth figures contain vertical lines that are normally not visible. Any mouse
move within the figure triggers a call to "nlabRshowVert", which looks for the position of the
mouse, calculates what the nearest vertical line is, and then shows it (by changing the line's
opacity).

7.8.5 Hide vertical bar: nlabRhideVert()
Line, point and smooth figures contain vertical lines that are normally not visible. When the
mouse moves outside the figure area, a call to nlabRhideVert is made, which should hide
(make opaque) any remaining vertical lines.

36 Erwin R. Komen

8 The “R” code
The “R” code comes in the form of one file called “NedLabVisGG.r”. This file is packaged
and sub-versioned in the “src/R” subdirectory of the Java code for the R-webservice
(although it functions independently of that Java code). It is located in the Nederlab home
directory (currently /home/nederlab) on the Linux server where the R-webservice is
running.
8.1 The structure of NedLabVisGG.r
The entrance to the “R” code from Java is the “R” function “nlabvis()”, which takes a JSON-
coded string as argument. The flow from this “R” function to the other, internal, “R” functions
is depicted graphically in Figure 4.
The “nlabvis()” function mainly serves to translate the JSON specification of the search
request into individual parameters, which are then passed on to the “nlabfigure()” function.
This function ultimately returns an object that either contains the required SVG picture (as well
as a table of results and a table of used broker-queries), or an error object containing an error
specification.
The “nlabfigure()” function is the core of the “R” functionality, as can be seen by a
pseudocode representation of it:
function nlabfigure(args)
 recycle := nlabget()
 if (recycle) then
 if (need to recalculate interval) then
 nlab := nlabintv()
 nlabpush(nlab)
 fi
 else
 method: termfreq
 nlab := nlabcalc()
 nlabintv(nlab)
 method: docfreq
 nlab := nlabdocintv()
 nlabpush(nlab)
 fi
 nlab := nlabmakeggplot(nlab)
 nlab := nlabtosvg(nlab)
 if (args.bDoSaveXml) then saveXML(nlab.parse) fi
 if (args.bDoSaveHtml) then nlabtohtml(nlab) fi
 if (args.file != “”) then save_as_file
 return nlab
end function

What “nlabfigure()” first does is check if the requested visualization has been requested
before, since every “R” connection (a connection is one in terms of “Rserve”, an “R” handling
service running locally on the Linux computer) holds a small cache of its most recent search
results. The size of this cache is currently set to “10”, but experiments may have it longer. (Its
size is set using a global variable in the NedLabVisGG.r code.)
Having decided a fresh visualization calculation is required, “nlabfigure()” acts, depending
on the “method” that has been chosen by the user. This method is either “termfreq”
(calculate the number of search hits in all texts) or “docfreq” (calculate the number of
documents containing at least one search hit). If the “termfreq” method is chosen, the
functions “nlabcalc()” and “nlabintv()” are called consecutively.

u459154:D
ata Files:M

eertens:R
-Interface:doc:2015_N

ederlabR
w

ebservice_v2-6.docx

Figure 4 Flow

 chart of the “R
” functions inside N

edLabV
isG

G
.r

nlabfigure

function
nlabfigure(args)

recycle2:=2nlabget()
if(recycle)2then
if(need2to2recalculate2interval)2then
nlab2:=2nlabintv()
nlabpush(nlab)
fi
else
m
ethod:2docfreq
nlab2:=2nlabdocintv()
m
ethod:2term

freq
nlab2:=2nlabcalc()
nlabintv(nlab)
nlabpush(nlab)
finlab2:=2nlabm

akeggplot(nlab)
nlab2:=2nlabtosvg(nlab)
if(args.bSaveXm

l)22then
saveXM

L(nlab.parse)2fi
if(args.bSaveHtm

l)2then
nlabtohtm

l(nlab)8fi
if2(args.file2!=2“”)2then2save_as_file
return2nlab

nlabvis

function
nlabvis(strJsonArgs)

args2:=2son_to_R_args(strJsonArgs)
objBack2:=2nlabfigure(args)
return2objBack

function
nlabdocintv

nlab2:=2nlabInit()
nlab2:=2nlabintv(nlab)
nlabsearchintv(?)
for2intItem

2:=212to2nSearch
//2One2search2per2searchNitem
nlabsearchintv(input[intItem

])
next
nlabdonorm

()

Function
nlabcalc()

nlabInit()
for2intItem

2:=212to2nSearch
//2O

ne2search2per2searchNitem
nlabsearch(input[intItem

])
next

Function
nlabintv()

nlabPrepIntv()
for2intItem

2:=212to2nSearch
…next

Function
nlabsearch()

//2G
et2total2num

ber2of2hits
nlabquery()
//2Visit2all2intervals
for2intI2:=212to2num

ber2of2intervals
nlabquery()
next2

nlabInit()

u459154:Data Files:Meertens:R-Interface:doc:2015_NederlabRwebservice_v2-6.docx

The former serves to initialize and execute the search for hits via the broker interface (the
broker search makes “function: termfreq” requests to all documents in the time interval and
divides the results into years within the “R” code), while the latter takes the results and
divides them properly into intervals. It is only the interval data that results in a visualization
and that gets returned to the user.
Note that the data calculated per year stays available in the cache, so that consecutive calls on
the same “connection” can re-use these data, if the only difference in the search request is a
difference in interval size.
The “nlabcalc()” function defers the actual searching to the “nlabsearch()” function.
Here is the pseudocode of nlabcalc(), nlabsearch() and nlabintv() respectively:
nlabcalc
 nlabInit()
 for intItem := 1 to nSearch
 // Do one search for each search-item
 nlabsearch(input[intItem])
 next

nlabsearch
 // Get the stats: total number of hits
 nlabquery()
 // Visit all intervals
 for intI := 1 to number of intervals
 nlabquery()
 next

nlabintv
 nlabPrepIntv()
 for intItem := 1 to nSearch
 …
 next

If the “docfreq” method is chosen, the broker can be requested to give all resulting hits per
interval, so that requests are formulated that result in a faceted response. This is handled
through the “nlabdocintv()” function. This function makes use of the “nlabsearchintv()”
one, which contains a call to “nlabquery()”. Here is the pseudocode of “nlabdocintv()”:
 nlab := nlabInit()
 nlab := nlabintv(nlab)
 nlabsearchintv(?)
 for intItem := 1 to nSearch
 // Do one search for each search-item
 nlabsearchintv(input[intItem])
 next
 nlabdonorm()

Once the search results have been calculated the main function “nlabfigure()” continues its
course of action by making a call to “nlabmakeggplot()”. This latter function calls the
“grid” package through “R” functions such as “qplot()” (a simplification of “ggplot()”),
resulting in a grid graphical object.
The function “nlabtosvg()” converts this graphical object into SVG, but it does more than
that. The resulting SVG needs to be tweaked in some places (in order to be compliant with all
current browsers), and callback functions need to be added. The function also adds vertical
lines that are normally invisible, unless activated by mouse movement. This latter
functionality depends on the calling JavaScript and it making use of the correct event-driven
functions.
The nlabfigure() function contains a few more optional actions: saving the SVG picture
straight away, saving the SVG as HTML straight away and saving a copy of the graphical object
in another format (such as JPEG, PDF and so on). These options are not activated by default.

Nederlab R-visualization 39

The nlabfigure() returns its result to the calling function, which is nlabvis() in the case of
the R visualization webservice.
8.2 Normalization
Depending on the search method chosen by the user of the webservice, “R” is able to
normalize the resulting data.

8.2.1 Document frequency normalization
Normalization of data found using the “docfreq” search method is done “on the fly”. That is
to say, an additional query is fired to the broker in order to find out what the amount of
documents (satisfying the “condition” and “filter” part) per interval is. This amount is
then used to calculate a relative frequency (per “intNorm” documents, where “intNorm” can
be set in the parameters to the “R” webservice).
In sum, the normalization calculation for the “docfreq” method is dynamic (it adjusts to the
conditions and filters) and broker-independent, which means that it can be freely used and
that it gives the desired results.
The location where document frequency normalization is handled is within the “R” code
module “NedLabVisGG.r”. The docfreq search is handled in the “nlabdocintv()” function.
This function makes use of the “nlabsearchintv()” one, which contains a call to
“nlabquery()”. The first call to the “nlabsearchintv()” function is one with “?” as an
argument, which signals the “nlabsearchintv()” function to adapt the “condition” part of
the broker query by using the function “cond_docfreq_adapt()”. This latter function is a
recursive one that looks for “type” parts called “equals”, “wildcard” or “phrase”
(provided they are part of a “list”). An additional requirement for the “type” parts called
“equals” is that the “field” value must be one of the known ‘searchable’ fields within the
broker interface (content and title fields). This requirement is handled internally by the
function “is_search_field()”, and the kinds of fields fulfilling this requirement are shown
in Table 6.

Field Comments
NLContent*

These contain, for instance:
NLContent_text_lowercase
NLContent_text
NLContent_ticcl_lowercase
Excluded: NL*_available

NL*_title
NL*_subtitle

Table 6 Fields that are known to contain searchable text
These type parts, then, are all changed to “wildcard” types with “?” as value. There is some
additional filtering that makes sure the “condition” only consists of “type”, “list”, “field”
and “value” elements. The broker query that has been adapted in this way (and that is
extended with an appropriate facetrange response part) yields the total amounts of documents
(that have at least some content) broken down over the facet ranged year intervals, and
filtered by any “filter” part of the main broker query.

8.2.2 Term frequency normalization
Normalization for the “termfreq” search method works differently, and currently uses a
static method. The termfreq normalization option should no longer be used, since it makes use
of outdated static data. The data it uses currently is a list of the number of words available per
year in the total Nederlab corpus based on the index that was used up to January 2015. Even if

40 Erwin R. Komen

this list would be adapted to the current (or another future) state of the index available under
the broker, there still is a fundamental problem: this type of normalization does not take the
user’s “condition” and “filter” specifications into account.
Future development of the Nederlab project should, therefore, seek to find a dynamic method
to calculate the total number of words in the documents selected by the user’s “condition”
and “filter” specifications.

8.3 Manual pages for selected “R” functions
The subsections here contain the manual pages for the most important “R” functions that are
part of the “NedLabVisGG.r” package.

Nederlab R-visualization 41

8.3.1 Function nlabvis
Description

Determine the frequency of occurrence per time-period of a number of 'search items'. The
search items may be single words or phrases. (No wildcards are allowed.) All the documents
(or just the titles of documents) that are available in "Nederlab" are searched through. The
frequency is the number of times the search item actually occurs in the documents (or just
their titles) available for a particular time-period. The results can be visualized in a number of
different formats (see under arguments), and they can also be stored in a file. The function
nlabvis is an intermediate function between the "Nederlab Onderzoeksportaal", which can
issue a search request to nlabvis in a JSON format (see below), which the function nlabvis
translates into a call to nlabfigure.
Usage
nlabvis(dtJson, sSessionUserJob = "", sTmpDir = "", bCheckPkg = T, debugL=0)

Arguments

dtJson a string in the JSON format, containing the specification of the search
sSessionUserJob unique string code from the caller
sTmpDir which directory to use for important temporary files (.grid, .log)
bCheckPkg flag telling nlabvis to check and load libraries (T) or not (F)
debugL debugging level: 0, 1, 2
Value

An object which is a key-value pair list. (If there has been an error, the only member of the
list is "error".)
svg an SVG (xml) representation of the figure visualizing the requested data.
tbl the nlab$intvData section (see "nlab")
info
qlist the list of broker queries (the nlab$lQuery section)
error more specific error message
See Also

nlabfigure.
Examples
Look for three terms (oorlog, vrede and staking) between 1800 and 1895,
then produce a 'pointline' figure of the results, divided over 5-year

intervals,
and normalize the (term) frequencies per 10.000 words found in these periods.
Use the indicated session-user-job-string, and the /home/nederlab/tmp directory
as a temporary one to store .grob and .log files. Do *not* check whether
the required "R" packages have been loaded.
Upon completion, get the "svg" picture into the variable 'svgOut'.
> dtJson <- '{
 "srchTerms": ["oorlog", "vreede", "staaking"],
 "colors": ["red", "gold", "darkblue"],
 "labels": ["oorlog", "vrede", "staking"],
 "source": "content",
 "method": "termfreq",
 "vis": "pointline",
 "yrFrom": 1800,
 "yrTo": 1895,
 "interval": 5,
 "norm": true,
 "legend": true,
 "intNorm": 10000,

42 Erwin R. Komen

 "server": "nederlab",
 "debugL": 0
}'
> oBack <- nlabvis(dtJson, 'sessionxd4567_bottom-left', '/home/nederlab/tmp', F)
> svgOut <- oBack$svg

Nederlab R-visualization 43

8.3.2 Function nlabfigure
Description

Determine the frequency of occurrence per time-period of a number of 'search items'. The
search items may be single words or phrases. (No wildcards are allowed.) All the documents
(or just the titles of documents) that are available in "Nederlab" are searched through. The
frequency is the number of times the search item actually occurs in the documents (or just
their titles) available for a particular time-period. The results can be visualized in a number of
different formats (see under arguments), and they can also be stored in a file. The function
nlabfigure calls a chain of other functions to do the actual work: nlabcalc communicates
with the Nederlab 'broker' and creates the initial nlab data structure; nlabintv divides the
frequencies over periods and calculates the normalized frequencies; nlabmakeggplot uses the
ggplot2 package to produce a grid structure plot; nlabtosvg converts the grid structure into
SVG (using gridSVG), supplementing it with JavaScript event calls. The function
nlabfigure returns an SVG picture that can be embedded in an <html> page.
Usage
nlabfigure(srchTerms, cnds=NULL, flts=NULL, intFrom=1800, intTo=2020,
 labels=NULL, colors=NULL, legend=T, width=7, height=7, strType="content",

strLine="line",
 interval=1, norm=T, intNorm=1000, intEnv=0, method="termfreq", file="",

server="nederlab",
 timeorder="nederl_time_order", events=NULL, show=T, dotime=F, stats="",

user="e",
 bCheckPkg = T, bSaveSvg = F, bSaveHtml = F, debugL=0)

Arguments

srchTerms a vector of search items, each of which may be a single word or a phrase. For
example: c("de oorlog", "vrede van").

cnds a vector of broker "condition" parts - one for each search item
flts a vector of broker "filter" parts - one for each search item
intFrom the first year to include in the search.
intTo the last year to include in the search.
labels a vector of short string labels - one for each search item
colors a vector of figure colors - one for each search item
legend show a legend next to the figure (T) or not (F)
width width of the canvas in inches
height height of the canvas in inches
strType location to search: "title" or "content". Default value is "content".
strLine the kind of graph that is to be produced. Only a limited selection of ggplot types

and combinations are allowed: point (one point for each hit), pointline (one
point for each hit, and a line connecting the points), smooth (one point for each
hit, an approximate smooth line through the points, and a half opaque background
area), line (a simple line without clear points), bar (side-by-side bars), barstack
(bars stacked upon one another), linebar (side-by-side bars with a line through
the data points)

interval the number of years that should be grouped together. Default is 1 (one), which
means that no grouping is done.

norm flag to indicate whether normalization of the data should be done (T) or not (F). If
set, the number of hits is divided by the total number of words available in the

44 Erwin R. Komen

Nederlab corpus for the indicated time interval, and this is then multiplied by
intNorm

intNorm if norm is set to TRUE, then intNorm specifies the amount of words that serve as
basis for the "normalized frequency" given in the figure. The default figure of
1000 indicates that the frequencies are "per 1000 words".

intEnv number of the user's page environment that is being used. This is used to keep
apart multiple figures on one user's display.

method nlabfigure allows for a number of different calculation methods: termfreq (even
though an interval may be specified, information is calculated for all the years),
docfreq (only information for the requested intervals is calculated, making use of
a facet query)

file relative or full path of the file where the graph should be saved to. The format of
the graph is automatically determined by the extension of the file name.
Recognized extensions are: .pdf, .wmf (windows meta file), .png, .jpeg, .bmp
(bitmap), .svg, .tex (pictex), .tiff and .ps/.eps (postscript/extended
postscript). The windows meta file format .wmf allows adaptation of the figure's
components.

server specify which server is to be used: "nederlab" or "radboud". The "radboud" server
does not connect to the Nederlab information; it gives random data back. It can be
used for test-purposes when the Nederlab server is out of order.

timeorder name of the date/year field to be used in the broker queries
events list of callback function names to be used in the resulting SVG figure
show show the resulting plot on the server’s "R" panel (since the server does not

support plotting, this has no effect)
dotime time is measured (T) or not (F). If set, the "response" parts in the broker queries

are extended with "cache=F".
stats not used
user unique session/user string
bCheckPkg check and load "R" libraries (T) or not (F)
bSaveSvg save the svg version of the figure (T) or not (F)
bSaveHtml save an html version of the figure (T) or not (F)
debugL level of debugging: 0, 1, 2.
Value

An "R" object is returned, which is a list containing the following elements:
years the names of the time-intervals
freqabs the absolute frequencies per interval
freqnorm the normalized frequencies per interval
docwords the number of words in all texts for this interval
nlab a data structure of the nlab type
See Also

ggplot, nlab, nlabcalc, nlabintv, nlabmakeggplot, nlabtosvg.
Examples
Look for the word "oorlog" between 1850 and 1918:
nlabfigure(c("oorlog"), intFrom=1850, intTo=1918)

Nederlab R-visualization 45

Compare the occurrences of "oorlog" and "vrede" between 1820-1920, taking
intervals of 10 years,

give normalized frequencies, use a bar plot:
nlabfigure(c("oorlog", "vrede"), intFrom=1820, intTo=1920, interval=10, norm=T,

strLine="bar")

Look for the phrase "de oorlog" between 1800-1850, and save the results in a

.wmf file:
nlabfigure("oorlog", intFrom=1850, intTo=1918, file="oorlog_1850-1918.wmf")

Compare "Frankrijk" and "Duitschland" between 1800-1880 in 15 year intervals,
return the frequency per 100.000 words, and put the results in list "t":
> t <- nlabfigure(c("frankrijk", "duitschland"), intFrom=1800, intTo=1880,

interval=15, strLine="bar", intNorm=100000, norm=T)
> t$nlab$intvData
 srchTerm srchId intvNames intvYears intvHits intvAbs intvWords
1 frankrijk 1 1800-1814 1800 10.717305 1813 16916566
2 frankrijk 1 1815-1829 1815 21.976168 3871 17614536
3 frankrijk 1 1830-1844 1830 17.473356 5787 33118995
4 frankrijk 1 1845-1859 1845 21.134211 10573 50027890
5 frankrijk 1 1860-1874 1860 18.526302 12818 69188119
6 frankrijk 1 1875-1880 1875 20.896434 4911 23501617
7 duitschland 2 1800-1814 1800 7.560636 1279 16916566
8 duitschland 2 1815-1829 1815 8.935802 1574 17614536
9 duitschland 2 1830-1844 1830 8.445305 2797 33118995
10 duitschland 2 1845-1859 1845 11.859385 5933 50027890
11 duitschland 2 1860-1874 1860 11.698540 8094 69188119
12 duitschland 2 1875-1880 1875 10.429070 2451 23501617

46 Erwin R. Komen

8.3.3 Function nlabcalc
Description

Count absolute frequencies of occurrence of one or more search items. Counting is done
within the specified subset of the historical Dutch texts that are made available in the
Nederlab project through the broker interface. The subset restricts the search to the texts
within a time frame. The nlabcalc function can only be called from within "R" and it returns
an "R" nlab object.
Usage
nlabcalc(srchTerms, cnds, flts, strType="content", intFrom=1800, intTo=2014,
 labels=NULL, colors=NULL, legend=T, width, height, server="nederlab",
 timeorder="nederl_time_order", events=NULL, dotime=F, user="", bCheckPkg = T,

debugL=0)

Arguments

srchTerms a vector of search items, each of which may be a single word or a phrase. For
example: c("de oorlog", "vrede van").

cnds a vector of broker "condition" parts - one for each search item
flts a vector of broker "filter" parts - one for each search item
strType search field to be used: "title" or "content" (nederlab). Default value is "content".

Nederlab2 uses other search fields.
intFrom the first year to include in the search.
intTo the last year to include in the search.
labels a vector of short string labels - one for each search item
colors a vector of figure colors - one for each search item
legend show a legend next to the figure (T) or not (F)
width width of the canvas in inches
height height of the canvas in inches
server specify which server is to be used: "nederlab", "nederlab2", or "radboud". The

"radboud" server does not connect to the Nederlab information; it gives random
data back. It can be used for test-purposes when the Nederlab server is out of
order.

timeorder name of the date/year field to be used in the broker queries
events list of callback function names to be used in the resulting SVG figure
dotime time is measured (T) or not (F). If set, the "response" parts in the broker queries

are extended with "cache=F".
user unique session/user string
bCheckPkg check and load "R" libraries (T) or not (F)
debugL level of debugging: 0, 1, 2.
Value

An "R" object of type nlab containing absolute frequency counts for the search terms as well
as numbers of words in Nederlab documents for the specified years. The interval-directed
parts of the returned object are created and initialized.
See Also

nlab, nlabfigure.
Examples
Calculate the occurrences of the word "oorlog" from 1850-1918:

Nederlab R-visualization 47

nli <- nlabcalc(c("oorlog"), intFrom=1850, intTo=1918)

Calculate the frequencies of "oorlog" and "vrede" from 1820-1920
but do this in the \strong{titles} of the documents:
nli <- nlabcalc(c("oorlog", "vrede"), intFrom=1820, intTo=1920, strType="title")

Check the structure of what is returned after calculation
> nli <- nlabcalc(c("frankrijk", "duitschland"), intFrom=1800, intTo=1880)
> str(nli)
List of 13
 $ input : chr [1:2] "frankrijk" "duitschland"
 $ cCol : chr [1:2] "red" "blue"
 $ cName : chr [1:2] "frankrijk" "duitschland"
 $ nYears : int 81
 $ nSearch: int 2
 $ yrFirst: num 1800
 $ yrLast : num 1880
 $ years : int [1:81] 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 ...
 $ fig : NULL
 $ parse : NULL
 $ norm : logi FALSE
 $ intNorm: num 1
 $ yrData :'data.frame': 162 obs. of 5 variables:
 ..$ srchTerm: chr [1:162] "frankrijk" "frankrijk" "frankrijk" "frankrijk" ...
 ..$ srchId : int [1:162] 1 1 1 1 1 1 1 1 1 1 ...
 ..$ year : int [1:162] 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 ...
 ..$ words : num [1:162] 1205922 945174 1081396 1012319 1193755 ...
 ..$ hits : num [1:162] 0 30 12 0 0 212 154 203 314 140 ...

48 Erwin R. Komen

8.3.4 Function nlabintv
Description

The nlabintv function takes an nlab data object as input. This data object must contain the
absolute frequencies of occurrence of one or more search terms, as they have been calculated
by nlabcalcl. Supplied with further specifications, the nlabintv function calculates interval
boundaries, absolute frequencies per interval as well as normalized frequencies per interval.
The output of the nlabintv function can function as input to the nlabmakeggplot function.
Usage
nlabintv(nlab, interval=1, norm=T, intNorm=1000, debugL=0)

Arguments

nlab An "R" object of type nlab containing absolute frequency counts for the search
terms as well as numbers of words in Nederlab documents for the specified years.

interval the number of years that should be grouped together. Default is 1 (one), which
means that no grouping is done.

norm flag to indicate whether normalization of the data should be done (T) or not (F). If
set, the number of hits is divided by the total number of words available in the
Nederlab corpus for the indicated time interval, and this is then multiplied by
intNorm

intNorm if norm is set to TRUE, then intNorm specifies the amount of words that serve as
basis for the "normalized frequency" given in the figure. The default figure of 1000
indicates that the frequencies are "per 1000 words".

debugL level of debugging: 0, 1, 2.
Value

The "R" object of type nlab as has been supplied for the input. The object now contains:
frequencies per
year

counts of occurrances for the search terms as well as numbers of
words in Nederlab documents for the specified years.

frequencies per
interval

counts of occurrances for the search terms as well as numbers of
words in Nederlab documents for the specified intervals.

normalization per
interval

the frequency of occurrence of the search terms per intNorm words
of texts that are available in the specified intervals.

See Also

nlabfigure, nlabcalc, nlabmakeggplot.
Examples
Calculate the frequency of occurrance of "oorlog" between 1800-1880,
and then draw bar graphs
> nlab <- nlabcalc(c("oorlog"), intFrom=1800, intTo=1880)
> nIntv <- 0
> # Loop through the data with an increasing bin size
> for (yr in nlab$yrFirst:nlab$yrLast) {
+ # calculate bin size
+ bin = yr - nlab$yrFirst + 1
+ # Calculate the division
+ nli <- nlabintv(nlab, bin, T, 10000)
+ # Check if the number of intervals differs
+ if (nli$nIntervals != nIntv) {
+ nIntv <- nli$nIntervals
+ # Tell what we are doing
+ cat("Intervals: ", nIntv, " bin size = ", bin, "\n")
+ # create a figure
+ nli <- nlabmakeggplot(nli, "bar")

Nederlab R-visualization 49

+ # show the figure
+ print(nli$fig, newpage=F)
+ }
+ }

Calculate the frequency of occurrence of "frankrijk" and "duitschland" between

1800-1880,
and then divide the data in 5-year intervals and calculate the frequencies per

10.000 words.
> nli <- nlabcalc(c("frankrijk", "duitschland"), intFrom=1800, intTo=1880)
> nli <- nlabintv(nli, 5, norm=T, intNorm=10000)
> str(nli)
List of 16
 $ input : chr [1:2] "frankrijk" "duitschland"
 $ cCol : chr [1:2] "red" "blue"
 $ cName : chr [1:2] "frankrijk" "duitschland"
 $ nYears : int 81
 $ nSearch : int 2
 $ yrFirst : num 1800
 $ yrLast : num 1880
 $ years : int [1:81] 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 ...
 $ fig : NULL
 $ parse : NULL
 $ norm : logi TRUE
 $ intNorm : num 10000
 $ yrData :'data.frame': 162 obs. of 5 variables:
 ..$ srchTerm: chr [1:162] "frankrijk" "frankrijk" "frankrijk" "frankrijk" ...
 ..$ srchId : int [1:162] 1 1 1 1 1 1 1 1 1 1 ...
 ..$ year : int [1:162] 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 ...
 ..$ words : num [1:162] 1205922 945174 1081396 1012319 1193755 ...
 ..$ hits : num [1:162] 0 30 12 0 0 212 154 203 314 140 ...
 $ nIntervals: num 17
 $ intvYears : num [1:17(1d)] 1800 1805 1810 1815 1820 ...
 $ intvData :'data.frame': 34 obs. of 7 variables:
 ..$ srchTerm : chr [1:34] "frankrijk" "frankrijk" "frankrijk" "frankrijk" ...
 ..$ srchId : int [1:34] 1 1 1 1 1 1 1 1 1 1 ...
 ..$ intvNames: chr [1:34] "1800-1804" "1805-1809" "1810-1814" "1815-1819" ...
 ..$ intvYears: num [1:34] 1800 1805 1810 1815 1820 ...
 ..$ intvHits : num [1:34] 0.0772 1.6291 1.4389 2.4349 2.3694 ...
 ..$ intvAbs : num [1:34] 42 1023 748 1328 1410 ...
 ..$ intvWords: num [1:34] 5438566 6279524 5198476 5454026 5950887 ...

50 Erwin R. Komen

8.3.5 Function nlabmakeggplot
Description

The nlabmakeggplot function takes an nlab data object as input. This data object must
contain the search terms, the interval boundaries, the absolute frequencies per interval as well
as normalized frequencies per interval. The output of the nlabmakeggplot is an enhanced
form of the nlab data object, where nlab$fig contains the grid object representation of the
type of visualisation chosen by the strLine input parameter.
Usage
nlabmakeggplot(nlab, strLine="line", theme="default", debugL=0)

Arguments

nlab An "R" object of type nlab containing absolute frequency counts for the search
terms as well as numbers of words in Nederlab documents for the specified years.

strLine the kind of graph that is to be produced. Only a limited selection of ggplot types
and combinations are allowed: point (one point for each hit), pointline (one point
for each hit, and a line connecting the points), smooth (one point for each hit, an
approximate smooth line through the points, and a half opaque background area),
line (a simple line without clear points), bar (side-by-side bars), barstack (bars
stacked upon one another), linebar (side-by-side bars with a line through the data
points)

theme default (background) theme for "ggplot" figures. Any other name here triggers using
the "theme_bw()". See the "ggplot" documentation on rcran.

debugL level of debugging: 0, 1, 2.
Value

The "R" object of type nlab as has been supplied for the input. The object now contains:
frequencies per
year

counts of occurrances for the search terms as well as numbers of
words in Nederlab documents for the specified years.

frequencies per
interval

counts of occurrances for the search terms as well as numbers of
words in Nederlab documents for the specified intervals.

normalization per
interval

the frequency of occurrence of the search terms per intNorm words
of texts that are available in the specified intervals.

grid object the grid object representation of the type of visualisation chosen by
the strLine input parameter.

See Also

nlabfigure, ggplot.
Examples
Calculate the frequency of occurrance of "oorlog" between 1800-1880,
and then draw a 'smooth' line through the 5-year interval points
> nlab <- nlabcalc(c("oorlog"), intFrom=1800, intTo=1880)
> nli <- nlabintv(nlab, 5, T, 10000)
> nli <- nlabmakeggplot(nli, "smooth")

Nederlab R-visualization 51

8.3.6 Function nlabtosvg
Description

Convert the information contained in a Nederlab data structure into an SVG (scaled vector
graphics) type xml format. The Nederlab data structure nlab contains a grid object produced
through ggplot, which is a visualisation of search terms and their frequency of occurrence in
specified time intervals. The nlabtosvg function converts the grid object to SVG (xml) and
adds event calls to JavaScript functions.
Usage
nlabtosvg(lstNlab, user, debugL=0)

Arguments

lstNlab an nlab data structure containing count data (frequency of occurrence for specified
search terms) as well as a grid object (a visualisation of the count data).

user unique string code for current user/session
debugL level of debugging: 0, 1, 2.
Value

SVG (xml) representation of the graphical object.
See Also

nlab, nlabfigure.
Examples
Get an SVG representation of the current count data for user "e":
nlabtosvg(nlab, "e")

52 Erwin R. Komen

8.3.7 Object nlab
Description

The nlab data structure consists of the input parameters to a search in the Nederlab
documents the results of that search, and the information that is needed to make a
visualisation of the results. The nlab structure undergoes a gradual enrichment as it is passed
around through the four functions it serves: (1) nlabcalc generates the nlab structure and
fills its yrData data frame, (2) nlabintv enriches it with visualisation interval parameters and
fills the $intvData data frame, (3) nlabmakeggplot creates a graphical object and adds it to
$fig within nlab, and (4) the nlabtosvg function creates an SVG xml representation of the
figure, adding it within nlab to the $parse element.
Usage
nlab

Format

The main format is a list:
input vector Search items
cnds vector Conditions (or NULL)
colors vector Colors (or NULL)
cName vector Same as Search
legend logical Show legend or not?
method chr docfreq or termfreq
width numeric width of figure (inches)
height numeric height of figure (inches)
nYears integer Number of years to cover
nSearch integer Number of search items
source chr Broker field to search (content, title)
server chr broker server (nederlab, nederlab2)
timeorder chr field holding the doc date/year
yrFirst numeric First year
yrLast numeric Last year
yrIntv numeric Years per interval
years int array Every year spelled out
figType chr The kind of graphical object (line/bar)
fig grid Graphical object
parse xml SVG representation of $fig
events list callback functions
norm logical Use normalisation or not?
intNorm numeric Normalization factor
yrData data-frame Parameters and search results per year
nIntervals numeric Number of intervals
intvYears int array Starting year of each interval
intvData data-frame Parameters and search results per interval

Nederlab R-visualization 53

This list contains two data-frames. The first dataframe, $yrData, holds search parameters and
search results as specified for and found for each year in the user-supplied range of years. The
data frame consists of five arrays, which can be seen as a dataset, where each row consists of
the information for one index in all five arrays:
srchTerm chr array Search term belonging to this index
srchId int array Search term number
year int array Year for this index

words num
array Number of words available in Nederlab for this index's year

hits num
array

Number of times the search term of this index occurs in the year of this
index

 The second dataframe is $intvData, and it holds the search parameters and search results for
each interval:
srchTerm chr array Search term belonging to this index
srchId int array Search term number
intvNames chr array Interval specification for this index

intvYears num
array Interval start year for this index

intvHits num
array

Normalized number of times the search term of this index occurs in the
interval of this index

intvAbs num
array

Absolute frequency for the search term of this index in the interval of
this index

intvWords num
array Number of words available in Nederlab for this index's interval

 Examples
> nlab <- nlabcalc(c("hans", "piet"), NULL, NULL, 1800, 1895, user="e")
> nlab <- nlabintv(nlab, interval=5)
> nlab <- nlabmakeggplot(nlab, "linepoint")
> nlab <- nlabtosvg(nlab, user="e")
> str(nlab)
List of 28
 $ input : chr [1:2] "hans" "piet"
 $ cnds : NULL
 $ colors : NULL
 $ cName : chr [1:2(1d)] "hans" "piet"
 $ legend : logi TRUE
 $ width : num 7
 $ height : num 5
 $ nYears : int 120
 $ nSearch : int 2
 $ source : num 1800
 $ yrFirst : num 1895
 $ yrLast : num 2014
 $ yrIntv : num 5
 $ years : int [1:120] 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 ...
 $ lQuery :List of 7
 ..$ query_1: chr

"{\"filter\":null,\"condition\":{\"type\":\"and\",\"list\":[{\"type\":\"phrase\"
,\"field\":1800,\"value\":\"hans\"},{\"type\":\""| __truncated__

 ..$ query_2: chr
"{\"filter\":null,\"condition\":{\"type\":\"and\",\"list\":[{\"type\":\"phrase\"
,\"field\":1800,\"value\":\"hans\"},{\"type\":\""| __truncated__

54 Erwin R. Komen

 ..$ query_3: chr
"{\"filter\":null,\"condition\":{\"type\":\"and\",\"list\":[{\"type\":\"phrase\"
,\"field\":1800,\"value\":\"hans\"},{\"type\":\""| __truncated__

 ..$ query_4: chr
"{\"filter\":null,\"condition\":{\"type\":\"and\",\"list\":[{\"type\":\"phrase\"
,\"field\":1800,\"value\":\"hans\"},{\"type\":\""| __truncated__

 ..$ query_5: chr
"{\"filter\":null,\"condition\":{\"type\":\"and\",\"list\":[{\"type\":\"phrase\"
,\"field\":1800,\"value\":\"piet\"},{\"type\":\""| __truncated__

 ..$ query_6: chr
"{\"filter\":null,\"condition\":{\"type\":\"and\",\"list\":[{\"type\":\"phrase\"
,\"field\":1800,\"value\":\"piet\"},{\"type\":\""| __truncated__

 ..$ query_7: chr
"{\"filter\":null,\"condition\":{\"type\":\"and\",\"list\":[{\"type\":\"phrase\"
,\"field\":1800,\"value\":\"piet\"},{\"type\":\""| __truncated__

 $ figType : chr "linepoint"
 $ fig :List of 9
 ..$ data :'data.frame': 48 obs. of 7 variables:
 $ srchTerm : chr [1:48] "hans" "hans" "hans" "hans" ...
 $ srchId : int [1:48] 1 1 1 1 1 1 1 1 1 1 ...
 $ intvNames: chr [1:48] "1895-1899" "1900-1904" "1905-1909" "1910-1914" ...
 $ intvYears: num [1:48] 1895 1900 1905 1910 1915 ...
 $ intvHits : num [1:48] 0.0759 0.0709 0.0609 0.0658 0.0812 ...
 $ intvAbs : num [1:48] 2173 2073 2475 2051 2156 ...
 $ intvWords: num [1:48] 28632896 29233831 40630814 31149653 26562382 ...
 ..$ layers :List of 2
 $:Classes 'proto', 'environment' <environment: 0x176dd524>
 $:Classes 'proto', 'environment' <environment: 0x176d0218>
 ..$ scales :Reference class 'Scales' [package "ggplot2"] with 1 fields
 $ scales:List of 1
 $:List of 14
 $ call : language discrete_scale(aesthetics = "colour",

scale_name = "hue", palette = hue_pal(h, c, l, h.start, direction), name =
"Zoekterm", na.value = na.value)

 $ aesthetics: chr "colour"
 $ scale_name: chr "hue"
 $ palette :function (n)
 $ range :Reference class 'DiscreteRange' [package "scales"] with 1

fields
 $ range: NULL
 and 15 methods, of which 3 are possibly relevant:
 initialize, reset, train
 $ limits : NULL
 $ na.value : chr "grey50"
 $ expand : list()
 - attr(*, "class")= chr "waiver"
 $ name : chr "Zoekterm"
 $ breaks : list()
 - attr(*, "class")= chr "waiver"
 $ labels : list()
 - attr(*, "class")= chr "waiver"
 $ legend : NULL
 $ drop : logi TRUE
 $ guide : chr "legend"
 - attr(*, "class")= chr [1:3] "hue" "discrete" "scale"
 and 21 methods, of which 9 are possibly relevant:
 add, clone, find, get_scales, has_scale, initialize, input, n,
 non_position_scales
 ..$ mapping :List of 3
 $ colour: symbol srchTerm
 $ x : symbol intvYears
 $ y : symbol intvHits
 ..$ theme : list()
 ..$ coordinates:List of 1
 $ limits:List of 2
 $ x: NULL
 $ y: NULL
 - attr(*, "class")= chr [1:2] "cartesian" "coord"

Nederlab R-visualization 55

 ..$ facet :List of 1
 $ shrink: logi TRUE
 - attr(*, "class")= chr [1:2] "null" "facet"
 ..$ plot_env :<environment: 0x1795e0d0>
 ..$ labels :List of 3
 $ y : chr "Frequentie per 1000 woorden"
 $ x : chr "Periodes"
 $ colour: chr "srchTerm"
 ..- attr(*, "class")= chr [1:2] "gg" "ggplot"
 $ parse :Classes 'XMLInternalElementNode', 'XMLInternalNode',

'XMLAbstractNode' <externalptr>
 $ norm : logi TRUE
 $ intNorm : num 1000
 $ events :List of 5
 ..$ fig_mouseover : chr "fig_showTip"
 ..$ fig_mouseout : chr "fig_hideTip"
 ..$ fig_click : chr "fig_click"
 ..$ vert_mousemove: chr "vert_showVert"
 ..$ vert_mouseout : chr "vert_hideVert"
 $ yrData :'data.frame': 240 obs. of 5 variables:
 ..$ srchTerm: chr [1:240] "hans" "hans" "hans" "hans" ...
 ..$ srchId : int [1:240] 1 1 1 1 1 1 1 1 1 1 ...
 ..$ year : int [1:240] 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 ...
 ..$ words : num [1:240] 4877068 5279616 6906461 6024377 5545374 ...
 ..$ hits : num [1:240] 377 392 414 484 506 319 450 568 386 350 ...
 $ timeorder : chr "nederl_time_order"
 $ server : chr "radboud"
 $ nIntervals: num 24
 $ intvYears : num [1:24(1d)] 1895 1900 1905 1910 1915 ...
 $ intvData :'data.frame': 48 obs. of 7 variables:
 ..$ srchTerm : chr [1:48] "hans" "hans" "hans" "hans" ...
 ..$ srchId : int [1:48] 1 1 1 1 1 1 1 1 1 1 ...
 ..$ intvNames: chr [1:48] "1895-1899" "1900-1904" "1905-1909" "1910-1914" ...
 ..$ intvYears: num [1:48] 1895 1900 1905 1910 1915 ...
 ..$ intvHits : num [1:48] 0.0759 0.0709 0.0609 0.0658 0.0812 ...
 ..$ intvAbs : num [1:48] 2173 2073 2475 2051 2156 ...
 ..$ intvWords: num [1:48] 28632896 29233831 40630814 31149653 26562382 ...
 $ method : chr "termfreq"

56 Erwin R. Komen

9 Appendices

9.1 Installation of the service (older notes)

Assumptions:
1) A virtual host cloud machine has been prepared based on Linux RedHat/CentOS
2) There is an account “nederlab” for this machine

Installing apache (=httpd):
sudo yum install httpd

Installing tomcat:
sudo yum install tomcat

Letting tomcat work under apache:
Find directory /etc/httpd/conf.d and add a new file ajp.conf:
(NOTE: see further below for an improved version)
ProxyRequests Off
<Proxy *>
 Order deny,allow
 Deny from none
 Allow from localhost
</Proxy>
ProxyPass /tomcat ajp://localhost:8009/
ProxyPassReverse /tomcat ajp://localhost:8009/
ProxyPass /manager ajp://localhost:8009/manager
ProxyPass /docs ajp://localhost:8009/docs
ProxyPassReverse /manager ajp://localhost:8009/manager
ProxyPassReverse /docs ajp://localhost:8009/docs
What this does: it defines one part of the interface between Apache (httpd) and Tomcat (the
other part is defined in /usr/share/tomcat/conf/server.xml, in the line that defines an
“AJP 1.3 connector on port 8009). This particular implementation says:
1) The connection is defined relative to “localhost”
2) Any access to http://myhost/tomcat is interpreted as a local access to the tomcat root

(And this implies that any directories under the tomcat root can be accessed likewise:
http://myhost/tomcat/nlabr accesses http://localhost/nlabr)

3) Access to http://myhost/manager and http://myhost/docs is interpreted as access to these
respective tomcat pages. This means we can access the tomcat manager from the outside
(provided we know the username – tomcat – and the password respectively, as defined
in tomcat-users.xml.)

Per Feb/2015 there is an improved version, which increases the safety:
ProxyRequests Off
<Proxy *>
 Order deny,allow
 Deny from none
 Allow from localhost
</Proxy>
ProxyPass /tomcat/nlabr ajp://localhost:8009/nlabr
ProxyPassReverse /tomcat/nlabr ajp://localhost:8009/nlabr

This version does not allow access to http://server/tomcat, but only to
http://server/tomcat/nlabr. This means that no logging-in is invited (unless a potential user
attempts to connect through sftp or ssh, obviously).

Adapt the file /usr/share/tomcat/conf/server.xml, adding after the <Host> section for
“localhost” another section:

Nederlab R-visualization 57

 <Host name="localhost2" appBase="/home/nederlab/webapps"
 unpackWARs="true" autoDeploy="true">

 <!-- SingleSignOn valve, share authentication between web applications
 Documentation at: /docs/config/valve.html -->
 <!--
 <Valve className="org.apache.catalina.authenticator.SingleSignOn" />
 -->

 <!-- Access log processes all example.
 Documentation at: /docs/config/valve.html
 Note: The pattern used is equivalent to using pattern="common" -->
 <Valve className="org.apache.catalina.valves.AccessLogValve"

directory="logs"
 prefix="nederlab_access_log." suffix=".txt"
 pattern="%h %l %u %t "%r" %s %b" />
 </Host>

This section only serves to make sure that any .war file that is put in
/home/nederlab/webapps gets automatically unpacked.

Add a context specification file nlabr.xml to the localhost in
/usr/share/tomcat/conf/Catalina/localhost:
<?xml version='1.0' encoding='utf-8'?>
<Context docBase="/home/nederlab/webapps/NLabR" path="/nlabr" reloadable="true" />

Result of this exercise:
• The .war files in ~/webapps are automatically unpacked and deployed upon renewal
• Http accessing is served in this way:

o Access to Fout! De hyperlinkverwijzing is ongeldig. – Apache (httpd) handling
by looking in /var/www/html

o Access to http://145.100.57.84/tomcat - Tomcat homepage handles this
o Access to http://145.100.57.84/manager - Handled by tomcat manager
o Nederlab visualisatie basis: http://145.100.57.84/tomcat/nlabr
o Nederlab visualisatie commando: http://145.100.57.84/tomcat/nlabr/qxjob?{...}

Installing R:
sudo yum install R

Preparing basics for R libraries:
sudo yum install curl curl-devel
sudo yum install libxml2 libxml2-devel

Getting R started up correctly:
R
setwd("/home/nederlab")
source("NedLabVisGG.r")
package("rJava")
package("Rserve")

The file.bash_profile needs to be adapted to contain several variables…
.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi
User specific environment and startup programs
JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.71.x86_64/jre

58 Erwin R. Komen

JRE_HOME=$JAVA_HOME
R_HOME=/usr/lib64/R
JRI_HOME=/home/nederlab/R/x86_64-redhat-linux-gnu-library/3.1/library/rJava
PATH=$JAVA_HOME/bin:$R_HOME/bin:$JRI_HOME:$PATH:$HOME/bin
CATALINA_HOME=/usr/share/tomcat
Make the variables available
export JAVA_HOME
export JRE_HOME
export R_HOME
export PATH
R_SHARE_DIR=/usr/share/R
export R_SHARE_DIR
R_INCLUDE_DIR=/usr/include/R
export R_INCLUDE_DIR
R_DOC_DIR=/usr/share/doc/R-3.1.2
export R_DOC_DIR
JRI_LD_PATH=${R_HOME}/lib:${R_HOME}/bin:
if test -z "$LD_LIBRARY_PATH"; then
 LD_LIBRARY_PATH=$JRI_LD_PATH
else
 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JRI_LD_PATH
fi

Tomcat needs to start in such a way that it knows where to find the additional libraries.
So adapt /etc/tomcat/tomcat.conf:
Use JAVA_OPTS to set java.library.path for libtcnative.so
JAVA_OPTS="-Djava.library.path=/home/nederlab/R/x86_64-redhat-linux-gnu-

library/3.1/library"

java.library.path = /home/nederlab/R/x86_64-redhat-linux-gnu-library/3.1
 /usr/lib64/R/lib
 /usr/lib64/R/bin
 /usr/java/packages/lib/amd64
 /usr/lib64
 /lib64
 /lib
 /usr/lib

This conf file also needs a last line with R_HOME defined as /usr/lib64/R/bin.

Directories to be created:
/usr/share/tmp Must be readable and writable by everyone!!!

9.2 Updating (notes)
Starting and stopping of the Apache server:
sudo service httpd start

Starting and stopping tomcat:
sudo service tomcat start
sudo service tomcat restart
sudo service tomcat stop

If there is a pid error message, then remove the tomcat PID lock files:
sudo rm /var/run/tomcat.pid
sudo rm /var/lock/subsys/tomcat
sudo service tomcat start

If there is a jriReadConsole infinite loop, then replace the existing catalina.out with the empty
one in the nederlab home directory:
sudo cp /home/nederlab/catalina.empty /usr/share/tomcat/logs/catalina.out

Nederlab R-visualization 59

Any changes in the R-location and the location or name of the NedLabVisGG.r file should be
processed in the file: /home/nederlab/webapps/nlabr-server.json

Also restart the Rserve program after having killed any Rserve processes:
ps –ef | grep Rserve
kill xxxx (fill in the process number to be killed)
cd ~
sh startRserve.sh

This re-loads the current ~/NedLabVisGG.r

9.3 Using the service (notes)
Getting debug info from the service (see section 2.5 and the response in section 3.6):
http://145.100.57.84/tomcat/nlabr/debug

Testing execution of an R-function through the service (see sections 2.7 and 3.8):
http://145.100.57.84/tomcat/nlabr/test?aapjes

An example of a real ‘life’ call to the service:
http://145.100.57.84/tomcat/nlabr/qxjob?{"srchTerms": ["koe", "paart"], "vis":

"bar", "yrFrom": 1800, "yrTo": 1895, "interval": 5}

The output can be monitored on the server by looking at:
sudo cat /usr/share/tomcat/logs/catalina.out (using sudo)
sudo tail –n 100 /usr/share/tomcat/logs/catalina.out (using sudo)

Testing the service can be done locally:
curl

http://localhost:8080/nlabr/qxjob?%7B%22srchTerms%22:%20%5B%22koe%22,%20%22paart
%22%5D,%20%22vis%22:%20%22bar%22,%20%22yrFrom%22:%201800,%20%22yrTo%22:%201895,%
20%22interval%22:%205%7D

The contents of the execution cache can be inspected locally by:
curl http://localhost:8080/nlabr/cache-info

The status of the currently committed job(s) can be checked locally by looking in the
directory /usr/share/tmp for the most recent .log files.
The status can be checked externally by (1) getting the userid and jobid, and (2) requesting:
http://145.100.57.84/tomcat/nlabr/statusq?{"userid": "yy", "jobid": "xx"}

Where “yy” and “xx” need to be filled in with the information received within the “qxjob”
answer!!!

60 Erwin R. Komen

10 References
INL. 2014. Blacklab Server Overview. Accessed September 2014.

URL: https://github.com/INL/BlackLab-server/wiki/BlackLab-Server-overview

